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Abstract

Background: Erythropoiesis stimulating agents (ESAs) were proposed to enhance survival of renal tissues through
direct effects via activation of EPO receptors on renal cells resulting in reduced cell apoptosis, or indirect effects via
increased oxygen delivery due to increased numbers of Hb containing red blood cells. Thus through several
mechanisms there may be benefit of ESA administration on kidney disease progression and kidney function in
renal patients. However conflicting ESA reno-protection outcomes have been reported in both pre-clinical animal
studies and human clinical trials. To better understand the potential beneficial effects of ESAs on renal-patients,
meta-analyses of clinical trials is needed.

Methods: Literature searches and manual searches of references lists from published studies were performed.
Controlled trials that included ESA treatment on renal patients with relevant renal endpoints were selected.

Results: Thirty two ESA controlled trials in 3 categories of intervention were identified. These included 7 trials with
patients who had a high likelihood of AKI, 7 trials with kidney transplant patients and 18 anemia correction trials with
chronic kidney disease (predialysis) patients. There was a trend toward improvement in renal outcomes in the ESA
treated arm of AKI and transplant trials, but none reached statistical significance. In 12 of the anemia correction trials,
meta-analyses showed no difference in renal outcomes with the anemia correction but both arms received some ESA
treatment making it difficult to assess effects of ESA treatment alone. However, in 6 trials the low Hb arm received no
ESAs and meta-analysis also showed no difference in renal outcomes, consistent with no benefit of ESA/ Hb increase.

Conclusions: Most ESA trials were small with modest event rates. While trends tended to favor the ESA treatment arm,
these meta-analyses showed no reduction of incidence of AKI, no reduction in DGF or improvement in 1-year graft
survival after renal transplantation and no significant delay in progression of CKD. These results do not support
significant clinical reno-protection by ESAs.

Keywords: AKI (acute kidney injury), Anemia, Clinical trial, EPO, Erythropoietin, ESA, Meta-analysis, Progression of CKD,
Reno-protection, Tissue protection, Transplant

Background
Erythropoietin (EPO) is a circulating hormone produced
by the kidney, that stimulates erythropoiesis by binding
and activating the EPO receptors (EPOR) on erythroid
progenitor cells [1]. Subjects with chronic kidney disease
(CKD) often develop anemia because of decreased produc-
tion of EPO resulting in insufficient erythropoiesis. The
cloning of the EPO gene allowed treatment of anemia in
CKD patients by stimulating erythropoiesis with rHuEpo
or other erythropoiesis stimulating agents (ESAs) [2].

Chronic anemia can result in organ damage affecting
the cardiovascular system, kidneys, and the central ner-
vous system [3–6] thus anemia correction might im-
prove outcomes. In addition, EPOR was reported in
nonhematopoietic tissues including renal cells [1], with
some preclinical data suggesting that ESAs may be reno-
protective due activation of EPOR resulting in anti-
apoptotic effects [7, 8]. Some data suggest ESAs are
reno-protective through an EpoR:CD131 complex and
that EPO derivatives lacking erythropoietic activity are
still reno-protective [9]. Other data conflicts with both
hypotheses [1, 10]. However, the possibility ESAs might
mitigate the serious consequences of renal ischemia
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through direct (anti-apoptosis of renal cells) or indirect
effects (increased oxygen delivery with increased Hb)
resulted in clinical trials to assess the potential benefit of
ESA treatment in humans with renal diseases, and ana-
lysis of the results of those trials is warranted.
Clinical interventions to see if there is a relationship

between ESAs and renal outcomes included short-term
prophylactic ESA treatment where there was a high like-
lihood of acute kidney injury (AKI), e.g., patients under-
going coronary artery bypass grafting (CABG) surgery.
In another modality, ESA treatment at the time of sur-
gery might mitigate the ischemic damage and delayed
graft function (DGF) that occurs during the periopera-
tive period following kidney transplant. DGF increases
the risk of acute rejection, impaired graft function, and
reduces long term patient and graft survival. In a third
modality, treatment of CKD patients to correct anemia
associated with renal failure presumes that ESA treat-
ment might delay or prevent renal disease progression
through direct anti-apoptotic effects on renal cells or
indirect effects of anemia correction, eg improved oxy-
gen delivery.
Most of the trials examining the effect of ESAs on

renal patients were small, outcomes were not robust or
they varied across studies. Therefore, results from
individual trials were inconclusive, but meta-analyses of
results from those clinical trials may allow more defini-
tive conclusions. We reasoned further that meta-
analysis of multiple modalities would add additional
value. The three modalities above were selected for
meta-analysis because they examined direct and/or in-
direct effects of ESAs on renal disease progression or
renal function. We report here that meta-analyses show
no significant beneficial effects in any of the modalities,
suggesting that ESAs have little reno-protective bene-
fits, at least with the patient populations examined and
clinical designs employed.

Methods
We wished to assess the effect of ESAs on kidneys by
analyzing data from human clinical trials where ESAs
might mitigate effects of ischemia or disease progression.
This necessitated comprehensive searches and identifica-
tion and analysis of controlled trials with renal patients
where ESAs were used to protect kidneys from ischemia
or to slow renal disease progression. All trials that had
relevant renal endpoints were selected and analyzed,
and data was extracted from those that might test the
hypothesis.

Search strategy
Literature searches were performed using OVIDSP
(Wolters Kluwer companies) to access MEDLINE and
other databases including Current contents, Embase

and BIOSYS previews, using search terms for ESAs
(EPO, erythropoietin, rHuEpo, rEpo, epoetin, darbepoe-
tin) in combination with anemia terms (anemia, Hb,
hemoglobin, hct, hematocrit), kidney or kidney injury
(renal, kidney, transplant, CKD, chronic kidney disease,
delayed graft function, DGF, acute kidney injury, and
AKI), and terms describing possible beneficial outcome
(protect, protection, reno-protection). Searches of the
Clinicaltrials.gov and the Cochran database websites
were performed using ESA terms combined with
anemia, renal, kidney and transplant, to further identify
potential papers of interest. A manual search of the
reference lists in papers, review articles and other
meta-analyses identified additional papers.

Trial selection/inclusion criteria
Papers considered for inclusion described human clinical
data with ESA treatment and renal endpoints. Papers
were rejected if they were not controlled trials, were case
reports, described only preclinical data, or lacked the
relevant renal endpoints. Papers with ESA treatment of
renal patients on dialysis were omitted because renal
disease progression was not applicable. The final list
included controlled clinical trials that utilized ESAs in
transplantation, AKI, and for anemia correction in pre-
dialysis CKD patients.

Data extraction
The data was recovered by SE and reviewed by ZE.
Recovered data included the study characteristics, study
location, length of study, ESA treatment, nature of the
comparator arm, number of subjects in each arm, time
intervals and definitions of renal endpoints. Results were
grouped according to study type (patients presenting
with or at risk of AKI, studies with kidney transplant pa-
tients, and CKD patients undergoing anemia correction).
For trials involving AKI, data collected for meta-analysis
was the number of patients with AKI and number of
patients with renal recovery following AKI. Other end-
points recovered from those trials were any creatinine-
based or enzymatic markers that were measures of renal
function or renal injury. With kidney transplant studies
the measures recovered for meta-analysis were incidence
of DGF within the first week post-surgery and graft loss/
survival over a 1 year period. Other data collected were
any creatinine-based data, incidence of proteinuria, and
enzymatic-based markers of renal injury. The meta-
analysis endpoint in anemia correction trials was inci-
dence of progression to renal replacement therapy (RRT;
progression to dialysis or kidney transplant) at any time
during the study. Other data recovered were, estimated
glomerular filtration rate (eGFR), serum creatinine (sCr),
and their rate of change over time, and incidence of
proteinuria. All the trial information and secondary
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measures are summarized in Tables 2, 3 and 4. The data
used in meta-analysis are shown in Figs. 3, 4, 5 and 6.
Data extracted to assess trial quality (bias) included

randomization, concealment of allocation, masking of
patients and clinicians, documentation of dropouts and
withdrawals, and whether analysis was by intention-
to-treat.

Statistical analysis
Data were summarized using Comprehensive Meta-
Analysis Software (V2) (Biostat, Inc., Englewood, NJ,
USA). A random-effects model was used because it as-
sumes treatment effects are not identical in all studies.
However, results of analyses using a fixed-effects model,
which assumes that the treatment effect is the same in
each study and that differences in results are due only to
chance, are also provided when the I2 statistic was not
equal to zero. Risk ratios (RR) and 95% confidence in-
tervals were calculated to compare results for patients
treated with ESA with the control group. Heterogeneity
or inconsistency across studies was assessed using
Cochrane’s Q (p-value) and the I2 statistic. The p-value
for the z-test comparing treatment groups was also
determined.

Results
Description of searches and study selection criteria
The titles of papers from the searches were reviewed,
and abstracts examined. Papers with potential relevance
to ESAs, human clinical trials and tissue protection were
recovered. This process resulted in 4056 papers. The
selection and rejection process for these papers is shown
in Fig. 1. Papers describing non-human studies, were re-
views, were not clinical trials, lacked renal endpoints,
were not in English, did not include a term for anemia,
Hb or an ESA in the paper, or they did not otherwise
fulfill the inclusion criteria were excluded. The resulting
309 papers described clinical trials with ESA-treated
subjects that fell into 3 categories, at risk or presenting
with AKI, ESA-treated kidney transplant patients and
patients undergoing anemia correction with ESAs.
Papers describing trials on dialysis patients, trials lacking
a control group, trials that did not use ESAs, or were
case studies, were omitted. Choukroun 2012 [11] was an
anemia correction trial on renal transplant patients and
not CKD patients so it was omitted. In 3 trials, ESAs
were given prior to renal transplant [12–15] and omitted
because there could be no direct effect of ESA on the
ischemic transplanted kidney. Duplications were

Fig. 1 Flow chart of study selection
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Table 1 Assessment of Risk of Bias of Randomized Controlled Trials
Reference Trial

features
Randomized
sequence

Allocation
concealment

Blinding of
outcome assessors

ITT analysis Reports on
Lost patients

All patients treated
in assigned group

Dardashti
2014 [24]

AKI: DB, SS Low risk: patients
were randomly
allocated.

Low risk: sequentially
numbered, sealed, &
opaque envelopes.
Independent nurses
prepared the study drug
& syringes were
delivered blinded

High risk High risk: 5
patients that
received study
drug were
discontinued
and excluded
from analysis

Low risk: lost
patients
reported

Low risk: all patients
treated

deSeigneux
2012 [76]

AKI: DB, SS Low risk: a
randomization
code was
generated by
computer

Low risk: envelopes with
allocation were prepared
by the quality of care
unit. A nurse opened the
envelopes and prepared
the syringes for injection.
Investigators and
patients were blinded to
the treatment

High risk Low risk: AKI
data on all
patients

Low risk: lost
patients
reported

Low risk: all patients
treated

Endre 2010
[26]

AKI: DB, MS
(2 centers)

Low risk:
allocation by a
predefined
computer-
generated
randomization
sequence

Low risk: concealment
was by a pharmacist;
pairs of identical
syringes. Patients, all
medical staff, &
investigators were
blinded to treatment

Low risk: Data Safety
Monitoring Board
with unmasking
followed recording of
the final AEs of the
patient last enrolled

Low risk Low risk: lost
patients
reported

Low risk: but 1
patient withdrew

Kim 2013 [27] AKI: DB, SS Low risk:
computer-
generated random
code

Low risk: medications
were prepared by a
nurse who knew the
patient’s group
assignment but was not
involved in the study

Unclear risk Low risk: No
dropouts

Low risk: lost
patients
reported

Low risk: all patients
treated

Oh 2012 [16] AKI: DB, SS Low risk: A
randomization
code list with a
block size of two
was generated.
Treatments were
allocated to
patients through
the Internet in
accordance with
the predefined
randomization list

Low risk: a research
coordinator performed
randomization and
prepared the study
drugs

Unclear risk Low risk Low risk: all
patients
completed
the trial

Low risk: all patients
completed the trial

Tasanarong
2013 [28]

AKI: DB, SS Low risk: treatment
assignment by
blocked
randomization.
Sealed envelopes
containing the
allocation group
were opened by
nurses who did
not participate in
the study

Low risk: treatments
were blindly given to
the research coordinator.
Patients and
investigators were
blinded to group
assignment. Pairs of
identical syringes
containing either
rHuEPO or saline were
prepared

High risk Low risk: No
dropouts

Low risk: no
dropouts

Low risk: no dropouts

Yoo 2011 [29] AKI:
OL(single
blinded), SS

Low risk: patients
were allocated by
computer-
generated random
numbers

Unclear risk: medications
were prepared and
administered by a ward
physician recognizing the
patient’s group but not
involved in the current
study, the surgeon and
anesthesiologist involved
were blinded

Low risk: the surgeon
and anesthesiologist
involved in the study
and patient
management were
blinded to the
patients’ groups until
the end of the study

Low risk:
complete data
sets from the
74 patients
were analyzed
without any
missing data

Low risk: no
dropouts

Low risk: complete
data sets from the 74
patients were
analyzed without any
missing data

Aydin 2012
[31]

Transplant:
DB, SS

Low risk: Patients
were randomized
by an independent
hospital pharmacist.
The randomization
allocation
sequence was
generated by a
random-number
table

Low risk: patients,
physicians, data
managers and
investigators were kept
blinded throughout the
study

Low risk: data
managers and
investigators were
kept blinded
throughout the study

Low risk: No
dropouts

Low risk: No
dropouts

Low risk: No
dropouts
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Table 1 Assessment of Risk of Bias of Randomized Controlled Trials (Continued)

Coupes 2015
[30]

Transplant:
DB, SS

Low risk: patients
were randomly
assigned by the
trial pharmacy by
computer

Low risk: all study
participants and the
study team were blinded
to the trial drug

Unclear risk Low risk: 1
patient
withdrew but
was included
in the analysis

Low risk: lost
patients
reported

Low risk

Hafer 2012
[32]

Transplant:
DB, SS

Unclear risk:
randomization
methodology not
disclosed

Low risk: vials containing
ESA and placebo had
identical appearance

Unclear risk Low risk for
DGF. High risk
for graft loss
(3 patients
died 1 in ESA
group and 2
in placebo
group)

Low risk: lost
patients
reported

High risk: 2 untreated
patients (not
included in analysis)
and 3 patients died

Martinez 2010
[33]

Transplant:
OL, MC

Unclear risk:
randomization
method not
disclosed

High risk: comparator
arm was untreated

Low risk: Blinded
evaluation of end-
points

Unclear risk: 1
died in ESA
group

Low risk: lost
patients
reported

Low risk

Sureshkumar
2012 [34]

Transplant:
DB, SS

Low risk: the
hospital pharmacy
created a schedule
using random
assignments to a
series of patient
study numbers

Low risk: ESA and
placebo were both 1 ml
syringes. The
medications were
administered in a
double-blinded manner

Unclear risk Low risk Low risk: no
dropouts

Low risk

Van Biesen
2005 [35]

Transplant:
OL, SS

Unclear risk:
randomization
method not
disclosed

High risk: open label High risk Unclear risk High risk Unclear risk

Van Loo 1996
[36]

Transplant:
OL, SS

Unclear risk:
randomization
method not
disclosed

High risk: open label High risk Low risk: no
deaths or
withdrawals

Low risk: no
deaths or
withdrawal

Low risk: no deaths
or withdrawals

Abraham
1990 [38]

Anemia
correction:
DB then
OL, Anemia
correction:
SS

Unclear risk:
randomization
method not
disclosed

Unclear risk: unspecified High risk Low risk: no
dropouts

Low risk: no
dropouts

Low risk

Clyne 1992
[39]

Anemia
correction:
OL, 2
center

Unclear risk High risk High risk Low risk: for
RRT

Low risk: lost
patients
reported

Low risk

Kleinman
1989 [40]

Anemia
correction:
DB, MC

Unclear risk:
randomization
method not
specified

Unclear risk: unspecified High risk Unclear risk:
no dropouts
reported

Unclear risk:
no dropouts
reported

Low risk

Kuriyama
1997 [41]

Anemia
correction:
OL, SS

Unclear risk High risk High risk Low risk Low risk: lost
patients
reported

Low risk

Lim 1989 [42] Anemia
correction:
DB, SS

Low risk:
randomization by
third party

Unclear risk Unclear risk High risk Low risk: lost
patients
reported

Low risk

Lim 1990 [43] Anemia
correction:
OL, SS

Unclear risk High risk High risk Low risk: no
dropouts

Low risk: no
dropouts

Low risk

Revicki 1995
[18]

Anemia
correction:
OL, MC

High risk High risk High risk Low risk: for
RRT endpoint

Low risk: lost
patients
reported

Unclear risk

Cianciaruso
2008 [45]

Anemia
correction:
OL, MC

Low risk:
randomization by
computer at a
separate site

Low risk: allocation was
concealed from
investigators, sequences
were sequentially
numbered in opaque
envelopes opened in
sequence

High risk Low risk Low risk: lost
patient
reports

High risk: 1 patient in
the treatment group
did not receive ESA,
study terminated
early

Gouva 2004
[47]

Anemia
correction:
OL, MC

Low risk:
computer
generated
sequence

Unclear risk High risk Low risk Low risk: lost
patients
reported

High risk: study
prematurely
terminated
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Table 1 Assessment of Risk of Bias of Randomized Controlled Trials (Continued)

Levin 2005
[48]

Anemia
correction:
OL, MC

Low risk:
computer
generated
sequence

Low risk: allocation was
in sealed sequentially
numbered opaque
envelopes. Designated
personnel opened the
next number in sequence

High risk Low risk Low risk: lost
patient
reports

High risk: only 77/85
in the high Hb group
received ESA

MacDougall
2007 [49]

Anemia
correction:
OL, MC

Low risk:
randomized using
central
randomization
procedures
(ClinPhone)

Unclear risk High risk Low risk Low risk: lost
patients
reported

High risk: patients in
the high Hb group
received ESA on day
1 but study was
prematurely
terminated

Pfeffer 2009
[50]

Anemia
correction:
DB, MC

Low risk: DB, and
patients were
randomly assigned
with the use of a
computer-
generated,
permuted-block
design

Unclear risk High risk High risk: 9
patients were
excluded prior
to unblinding

Low risk: lost
patient
reports

High risk: 93.9% of
the patients in the
darbepoetin alfa
group were receiving
the assigned
treatment at
6 months”

Ritz 2007 [51] Anemia
correction:
OL, MC

Low risk:
randomization
was performed
centrally into
treatment groups
by using a block-
size randomization
procedure stratified
by country

Unclear risk High risk Low risk Low risk: lost
patient
reports

Unclear risk: patients
in group 1 were
started immediately
ESA but 3 patients
withdrew

Roger 2004
[52]

Anemia
correction:
OL, MC

Low risk: patients
were randomized
according to
computer-
generated
stratification tables

Low risk: order
concealment was
maintained until the
intervention was
assigned

High risk Low risk Low risk: lost
patient
reports

Low risk

Rossert 2006
[53]

Anemia
correction:
OL, MC

Low risk: patients
were randomized
according to
computer-
generated
stratification
schedule

Unclear risk High risk Low risk Low risk: lost
patient
reports

High risk: study was
terminated
prematurely. Many
subjects did not
enter maintenance or
withdrew

Villar 2011
[55]

Anemia
correction:
OL, MC

Low risk: block-
size randomization
was used

Unclear risk High risk Low risk Low risk: lost
patients
reported

Unclear risk: most
patients likely
received ESA but 6
patients died or
withdrew

Akizawa 2011
[44]

Anemia
correction:
OL, MC

Low risk: patients
were assigned by
a computer
according to a
minimization
method

Unclear risk High risk Low risk Low risk: lost
patients
reported

High risk: after 1
administration, 43
withdrew.

Drueke 2006
[46]

Anemia
correction:
OL, MC

Low risk:
randomization
was performed
centrally with the
use of a dynamic
randomization
method

Unclear risk High risk Low risk Low risk: lost
patients
reported

High risk: 75 in the
high Hb group
withdrew

Singh 2006
[54]

Anemia
correction:
OL, MC

Low risk: patients
were assigned
by computer-
generated
per-muted-block
randomization

Unclear risk High risk Low risk Low risk: lost
patients
reported

High risk: study was
terminated early at
the second interim
analysis because
power to demonstrate
benefit was less than
5%, and there was a
high withdrawal rate

*RCT-randomized controlled trial, DB Double blind, OL Open label, MC Multicenter, SC Single center
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identified; Oh 2012 [16] was a reanalysis of Song 2009
[17] and Revicki 1995 [18] was a follow-up of Roth 1994
[19]. The Park (2005) [20] and Olweny (2012) [21] trials
were excluded from meta-analysis because they were
retrospective trials without AKI endpoints. 33 papers
published between 1989 and 2015 remained, and their
characteristics and extracted data are summarized in
Tables 2, 3 and 4. Measures of renal function (sCr, eGFR,
and enzymatic) varied, (methods and times), or were not
reported in many papers. Therefore, we chose not to
perform meta-analyses using those markers but instead
summarize available data in the tables. Meta-analyses
(Forrest plots) using the selected hard endpoints, are
shown in Figs. 3, 4, 5 and 6.

Risk of bias assessment
Trial quality (potential bias) was evaluated utilizing
Jadad [22] and Cochrane recommendations. With the
exception of Kamar 2010 [23] (which was a observa-
tional trial) all the trials used in meta-analysis were
RCTs. Risk of bias assessment is shown in Table 1 and
Fig. 2. Most trials provided an ITT analysis with reporting
of lost patients. The trials also had adequate methods to
randomly distribute subjects into intervention vs control
groups. Blinding of subject distribution and blinding of
outcome to assessors was inadequate in most trials,
particularly the anemia correction trials. However, the
hard renal endpoints used in these meta-analyses are
strengths. Most AKI and transplant trials were double-
blinded with few dropouts, while the anemia correction
trials were mostly open-label with variable numbers of
dropouts. Overall, the trials had a risk of bias that was
considered acceptable and thus results from meta-
analysis would be informative.

Outcomes and meta-analysis
AKI trials
Nine trials were identified [16, 20, 21, 24–29] that assessed
whether ESAs might reduce the risk of AKI (Table 2).

In 8 trials the subjects underwent cardiac surgery
(coronary artery grafting, or valvular heart surgery
involving cardiopulmonary bypass) and in 1 trial the
subjects underwent partial nephrectomy. The com-
bined number of subjects was 1020; 490 in the ESA
groups and 530 in the control groups. The trial sizes
ranged from 71 to 187 subjects. The number of ESA
administrations were small (1 or 2) so there were
little/no changes in Hb (Table 2).
The endpoint tested in the meta-analysis was the

number of patients that developed AKI within 2–7 days
(>50% increase serum creatinine, or >0.3 mg/dl increase,
AKIN definition). Four of the trials were performed by
overlapping members of the same study groups [16, 17,
27, 29]. Song (2009) and Oh (2012) analyzed the same
71 patients and patient data, but used different defini-
tions of AKI. They increased the duration of observation
to 72 instead of 48 h, and therefore had different num-
bers of patients that progressed to AKI. We used the de-
terminations from Oh (2012) because it is more recent
and the definition used is more complete (AKIN).
Overall 107 of 367 (29%) of the subjects developed

AKI in the ESA groups, with 133 of 357 (37%) in the
control groups (Fig. 3). The RR slightly favored the ESA
arm, but it did not reach statistical significance using
either the random effects (0.79 [0.55, 1.14]), or fixed
effects models (0.85 [0.69, 1.05]). Heterogeneity was high
(I2 = 60%), 3 trials showed benefit in the ESA arm, while
the other 4 were neutral, or favored the control arm.
This heterogeneity is further apparent when other renal
endpoints were examined (Table 2). In 1 trial [20] there
was no difference in renal recovery, in 4 trials there was
no difference in creatinine-based markers. However, in a
5th mixed results were reported. In a 6th creatinine
markers favored slightly (p = 0.054) the ESA group and
in the 7th, creatinine-based markers favored the ESA
group. In 3 trials there was no difference in eGFR be-
tween groups, while in another trial, eGFR was improved
in the ESA arm. Overall the secondary outcome analyses

Fig. 2 Risk of bias graph

Elliott et al. BMC Nephrology  (2017) 18:14 Page 7 of 16



using non-creatinine-based renal biomarkers did not
demonstrated significant reno-protection by ESAs. In 3
trials urine or plasma NGAL or serum cystatin C) were

the same in both groups; in the 4th, urinary NGAL was
lower in the ESA arm, although the significance of this
difference is uncertain.

Table 2 AKI studies

Reference Study Location Patient
Population

ESA Control Subjects
(Total and #
in groups)

Renal Injury
(AKI) Definition

Other Outcomes

Dardashti
2014 [24]

Sweden (Skåne
University
Hospital, Lund)

Patients scheduled
for CABG with
preexisting renal
impairment

Epoetin zeta
(400 IU/kg;
Retacrit®)
administered
preoperative

Equivalent
volume of
saline

N = 70:
ESA(35),
control(35)

RIFLE on d3 based
on eGFR using the
Modification of Diet in
Renal Disease formula

No difference in Hb,
transfusions, relative
cystatin C, NGAL,
creatinine, urea, or eGFR)

deSeigneux
2012 [76]

Switzerland
(University
Hospital,
Geneva)

Patients admitted
to the ICU for
cardiac surgery

ESA Group 1
(20,000 IU; epoetin
α), group 2 (40,000
UI epoetin α) &
group 3 (control) 1
to 4 h post-surgery

Isotonic
sodium
chloride

N = 80:
ESA group
1(20), ESA
group 2(20),
control(40)

AKIN from ICU
admission to the
following wk

No difference in Hb,
creatinine, cystatin c, or
urinary NGAL levels

Endre 2010
[26]

New Zealand
(Christchurch
or Dunedin
Hospital)

Patients admitted
to the ICU or high-
risk patients sched-
uled for cardio-
thoracic surgery
with CPB

ESA (500 U/kg (iv)
to a maximum of
50,000 U), within
6 h of increased
GGT AP and a
second dose 2 h
later

Equivalent
volume of
normal
saline

N = 163:
ESA(84),
control(78)

AKIN classification in
7 days

No difference in any
creatinine-based
variables

Kim 2013
[27]

Korea (Yonsei
University
Health System,
Seoul)

Patients with
preoperative risk
factors for AKI who
were scheduled for
complex valvular
heart operations

Epoetin α (300
IU/kg (iv); Epocain)
after anesthetic
induction

Equivalent
volume of
normal
saline.

N = 98:
ESA(49),
control(49)

An increase in serum
creatinine >0.3 mg/dl
or >50% from
baseline:

No differences in Hb,
sCr, eGFR, creatinine
clearance, cystatin C or
serum NGAL

Olweny
2012 [21]

USA (UT
Southwestern,
Houston,
Texas)

Patients who
underwent
laparoscopic partial
nephrectomy

Epoetin α (500
IU/kg (iv) Procrit)
30 min prior to LPN

No ESA N = 106:
ESA(52),
control(54).

NA No difference in eGFR

Oh 2012
[16]

Korea, National
University
Bundang
Hospital, Seoul

Patients scheduled
for elective CABG

Epoetin β (300
U/kg Recormon)
before CABG

Saline N = 71:
ESA(36,)
control(35).

SCr ≥ 0.3 mg/dL from
baseline, ≥50%
increase in the sCr
concentration in the
first 72 h after CABG,
or <0.5 mL/kg per
hour of oliguria for
more than six hr

sCr was not different
from baseline in the ESA
group, but was higher in
the placebo group.

Park 2005
[20]

USA (surgical
ICU),
cardiothoracic
ICU, or medical
ICU at Barnes-
Jewish Hos-
pital, St Louis,
Missouri)

Patients scheduled
for elective CABG

ESA (112 U/kg/
week average)
within the first
14 days of RRT
initiation

No ESA N = 187;
ESA(71),
control(116)

NA No difference in
transfusions. sCr at
2 weeks favored the ESA
arm but did not reach
statistical significance (p
= 0.054). No difference
in renal recovery or
renal survival

Tasanarong
2013 [28]

Thailand
(Thammasat
Chalerm Prakiat
Hospital)

Patients scheduled
for elective CABG
using CPB

epoetin β (200
U/kg; Recormon) 3
d before CABG and
100 U/kg at the
operation time.

Same
volume &
schedule
of 0.9%
saline

N = 100:
ESA(50),
control(50)

≥0.3 mg/dl or ≥50%
increase in sCr from
baseline within the
first 48 h post-
operation according
to the KDIGO 2012
criteria.

No difference in Hb. sCr
increase and eGFR
decrease was lower in
the ESA group. Mean
urine NGAL group was
lower in the ESA group
2 h & 18 h.

Yoo 2011
[29]

Korea (Yonsei
University
Health System,
Seoul)

Patients scheduled
for valvular heart
surgery (VHS) with
preoperative
anemia

Epoetin α (500
IU/kg (iv); Epocain
and 200 mg iron
sucrose (iv)) 16-
24 h pre-surgery

Equivalent
volume of
normal
saline

N = 74:
ESA(37),
control(37)

Increased sCr of
0.3 mg/dl, or 50–
200% from baseline,
using modified RIFLE
classification within
48 h after surgery

Reduced transfusions.
No difference in
mortality
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Renal transplant trials
Reinstitution of blood flow in cadaveric or live donor
kidneys activates a sequence of events that results in
renal injury, which may result in the development of
DGF. DGF can translate into a decrease in long-term
graft survival. In most ESA trials in transplant pa-
tients [14, 23, 30–36], DGF was defined as a require-
ment for dialysis within 7 days of the transplant
[37]. In trials where multiple definitions were pre-
sented, data according to this definition was used.
However, in some papers the definition of DGF was
not disclosed, or an alternate measure was used
(Table 3). The trial sizes were small to moderate in
size (29–181 subjects). Like AKI trials, the number
of ESA administrations were limited with little/no
change in Hb.
A meta-analysis with 450 subjects utilizing the DGF

endpoint (7 trials), is shown in Fig. 4. DGF developed in
92 of 223 (41%) in the ESA arms and 106 of 227 (47%)
in the control arms. The RR was neutral using random
or fixed effects models (0.96 [0.83, 1.10]. Heterogeneity
was low (I2 = 0%).
Meta-analysis of long term graft loss over 1 year in

four trials showed similar outcomes (Fig. 5). Fifteen of
221 subjects (6.8%) had graft loss in the ESA arms
and 21 of 241 (8.7%) in the control arms. The RR
(0.78 [0.41, 1.48]) slightly favored the ESA arm but
did not reach statistical significance. Heterogeneity
was low (I2 = 0%). Excluding the retrospective study
[23] reduced the apparent benefit with 9/139 (6.5%) in
the ESA arm and 10/142 (7.0%) having graft loss, and
the RR was closer to neutral, but with a larger range
(0.90 [0.37, 2.15]).
In the 7 trials, additional renal outcomes were re-

ported that showed no differences between ESA and
no-ESA groups (Table 3). These included creatinine-
based endpoints (6 trials), eGFR (3 trials), proteinuria
(1 trial), histological indices in graft biopsies at 6 weeks
and 6 months post-transplant (1 trial), and low molecu-
lar weight urinary protein AKI biomarkers (NGAL and
IL-18) (1 trial) [34].

Anemia correction trials
CKD patients are often anemic, and ESA treatment to
increase and maintain Hb levels is long-term. Therefore,
analysis of ESA anemia correction clinical trials is a
potentially useful method to assess the effect of Hb in-
creases, and oxygen delivery to renal tissues, on renal
disease progression.
In the 19 anemia correction trials identified, CKD pa-

tients were typically divided into 2 groups; those
remaining at their starting Hb (control) and those where
ESAs were used to target a higher Hb. ESAs in the 19
trials [18, 38–55] were typically given 1-3 times per week
to raise and maintain target Hb levels (Table 4). The
achieved Hb levels in most trials were 11–13.5 g/dL,
with increases of 1–2.5 g/dL above the starting level.
Trial duration ranged from 2 to 48 months. Many sub-
jects in the lower Hb groups received ESAs, but at
lower doses. In some trials, there was no ESA treatment
of patients in the control groups. We performed meta-
analysis on all trials and a separate meta-analysis of
trials where subjects in the control groups did not re-
ceive ESAs (Fig. 6).
Patients that progressed to RRT included those that

began dialysis or received a transplant. In one trial a
patient withdrew because of sepsis and AKI [48]. This
event was included in the RRT endpoint of that study.
No patients progressed to dialysis in either arm of the
Lim 1989 [42] trial making it unsuitable for inclusion in
a meta-analysis with a RRT endpoint.
The remaining 18 anemia correction trials had a

combined total of 8020 subjects; 3964 in the treatment
arm (higher Hb) and 4056 in the comparator (low Hb
control) arm. Trials were of varying size; 3 had over
600 subjects. The initial and achieved Hbs in the 2
groups are shown in Table 4.
Overall, 768 (19.4%) of subjects in the treatment arm

and 786 (19.3%) in the control arm, progressed to RRT
(Fig. 6). With meta-analysis, the RR (random effects) of
progression to RRT was 1.04 [0.91, 1.18] with low het-
erogeneity (I2 = 25.0%). This lack of effect on disease
progression is supported in 18 trials by other

Fig. 3 ESAs and incidence of AKI in patients at risk for AKI
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assessments of change in renal function, including pro-
teinuria, or creatinine based markers where there were
no significant differences reported between groups
(Table 4). However, in one trial time to a doubling in

serum creatinine was significantly slower in the ESA
group (Kuriyama 1997) [41]. This anemia correction
meta-analysis does not assess direct ESA effects per se
because subjects in both arms may have received ESAs.

Table 3 Kidney transplant studies

Reference Study Location ESA Control Subjects
(Total and
# in groups)

DGF definition Other Outcomes

Aydin 2012
[31]

Netherlands
(Leiden University
Medical Center)

Epoetin β (33,000 IU) on 3
consecutive d, starting 3–
4 h before transplantation
& 24 & 48 h post-
reperfusion.

Saline solution
(0.9%)

N = 92:
ESA(45),
control(47)

Need for dialysis in the
first wk or if sCr increased,
remained unchanged or
decreased by less than
10% per d during 3
consecutive d for more
than 1 week

No significant differences
in Hb, endogenous
creatinine clearance or
proteinuria

Coupes 2015
[30]

United Kingdom
(Manchester
Royal Infirmary)

Epoetin β (100,000 U;
33,000 intraoperative and
33,000 at 24 and 48 h).

Placebo (not
disclosed)

N = 39:
ESA(19),
control (20)

Need for dialysis in first
7 days post-transplant

No difference in Hb or
number of transfusions.
No significant difference
in sCr or eGFR at any time
point to 90 day, No
difference in acute
rejection episodes, or
biomarkers (NGAL, KIM-1
or IL-18)

Hafer 2012
[32]

Germany
(Hannover
Medical School)

Epoetin α (40,000 U (iv);
Eprex) immediately before
reperfusion and d3 and d7
after transplantation

Placebo (not
disclosed)
same volume
and
appearance

N = 88: ESA
(44), control
(44)

Urine output of less than
500 ml in the first 24 h
after transplantation
and/or need of dialysis
because of graft
dysfunction within
the first wk after
transplantation

Higher Hb at 2 and 4 but
not 6 weeks. No
significant difference in
transfusions, eGFR 6
weeks or 12 months. No
significant differences
6 weeks and 6 months
post-transplant in
histological indices.

Kamar 2010
[23]

France
(Department of
Nephrology,
Dialysis and
Organ
Transplantation,
CHU Rangueil,
Toulouse)

Epoetin α or epoetin β
(250 IU/kg/week) on d5
post-transplant, unless Hb
level was above 12 g/dl
for women and 13 g/dl for
men. Cumulative ESA dose
(D30) was 727 ± 499 IU/kg.

No ESA during
the first month
post-
transplantation
unless Hb
dropped to
<8 g/dl)

N = 181:
ESA (82),
control (99)

NA Reduced Hb in ESA arm.
No difference in
transfusions. sCr levels
were similar in both
groups at 3, 6 and
12 months post-
transplantation

Martinez,
2010 [33]

France (13
centers)

Epoetin β (30.000 IU;
Neorecormon) given
before surgery and at
12 h, d7 and d14

No ESA during
the first month
post
transplantation

N = 104:
ESA (51),
control (53)

The need for dialysis
during the first wk after
transplantation

Higher Hb in ESA arm at
1 month. No difference in
transfusions. No difference
in sCr at any time point.
No difference in eGFR at 1
or 3 months

Sureshkumar
2012 [34]

Pennsylvania
(USA) (Allegheny
General Hospital,
Pittsburgh,
Pennsylvania)

Epoetin α (100,000 U (iv);
Procrit) intraarterially
immediately after
reperfusion

Matched
placebo (not
disclosed)

N = 72: ESA
(36), control
(36)

The need for dialysis
within the first wk of
transplantation

No difference in Hb,
sCr, eGFR or urinary
biomarkers of AKI
(NGAL or IL-18)

Van Biesen
2005 [35]

Belgium
(University
Hospital Ghent)

Epoetin β (100/IU/kg;
Recormon) immediately
after transplantation then
thrice weekly to maintain
Hb above 12 g/dL

No ESA N = 26: ESA
(14), control
(12)

Not defined Shorter time to target Hb
in ESA arm. No difference
in transfusions or sCr at
3 months

Van Loo
1996 [36]

Belgium
(University
Hospital, Gent,
Belgium)

Epoetin β (within 1 week
post transplant). Starting
dose was 150 U/kg 3X/
week (sc), for a maximum
of 12 weeks to maintain
Hct between 25% and 35%.

No ESA N = 29, ESA
(14), control
(15)

T1/2 sCr (the time for sCr
to reach 50% of the pre-
transplantation value for
more than 2.5 days)

Increased Hb and reduced
transfusions in ESA arm.
No difference in sCr at any
time point.
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However, Hb levels increased in the ESA treatment/
high Hb arms. Thus the absence of benefit argues that
anemia correction per se is not reno-protective.
In 6 of the 18 anemia correction trials, subjects in the

comparator arm did not receive ESAs [18, 19, 38–43].
These trials included a total of 268 subjects. 42 of 129 in
the ESA group (33%) and 60 of 139 in the control group
(43%) progressed to dialysis. Meta-analysis showed a
trend towards improvement in the progression to RRT
in the ESA treatment group but this did not reach statis-
tical significance; the RR according to the random effects
model was 0.79 [0.6, 1.04] (Fig. 6). The result was similar
using the mixed effects model. Heterogeneity was low.
Measures of serum creatinine over time showed no
statistical difference in 6 of the 7 trials. Thus this select
analysis also does not support either direct or indirect
(anemia correction) beneficial effect on renal disease
progression by ESAs.

Discussion
We assessed potential beneficial effects of ESA treat-
ment on acute or chronic renal disease. One potential
benefit is that ESAs might increase renal tissue survival
and therefore renal function following ischemic events
due to an interaction of ESAs with receptors resident on
the surface of renal cells resulting in an anti-apoptotic
effect. Alternatively, there may be mitigation of the
negative effects of anemia, since anemia is associated
with an increased risk of renal disease progression and
allograft loss over the long term [56, 57]. However, these
meta-analyses showed no clear benefit of short-term
ESAs in AKI and transplant trials, where there was little

change in Hb levels, arguing an absence of direct benefit.
There was also no significant ESA benefit in longer-
term anemia correction trials, regardless of whether the
comparator group received or did not receive ESAs.
Thus there appeared to be little short or long-term
reno-protective benefit of ESAs, via direct (via activa-
tion of EPOR or via an interaction of ESA with an
EPOR:CD131 hybrid receptor [9]) or indirect (increased
Hb) mechanisms.
The lack of clear benefit of ESAs on renal disease is

consistent with earlier meta-analyses. A meta-analysis
with patients at risk for AKI showed no benefit of ESAs
on incidence of AKI [58]. Another meta-analyses of
effects of ESAs on CKD patients also showed no clear
benefit on progression to RRT, comparing ESA treat-
ment to no treatment [59] or comparing high vs low
Hb targets [60, 61], nor was there was an association
between ESA dose and annual GFR change or progres-
sion to ESRD [62].
Overall and to date, the potential cyto-protective ef-

fects of ESAs reported in animal models have generally
not translated into benefit in humans, according to other
studies examining benefit with other ischemic tissues
[63]. There was no significant benefit of ESAs on infarct
size in a meta-analyses of patients with acute ST-
segment elevation myocardial infarction [64, 65], and no
effect on nonfatal heart related events in a meta-analysis
of ESA-treated patients with heart failure [66]. There
was also no difference in a meta-analysis of retinopathy
of prematurity in infants treated with ESAs [67]. There
was no benefit of either ESA or increased Hb in an ESA
trial on patients with traumatic brain injury [68, 69], and

Fig. 4 ESAs and DGF in patients undergoing kidney transplant

Fig. 5 ESAs and graft loss in patients undergoing kidney transplant
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Table 4 Anemia correction studies

Reference Study Location ESA Duration of
Therapy

Comparator Arm Subjects
(Total
and # in
groups)

Starting vs
Achieved
Hb High(H)
or low(L) Hb
Group (g/dL)

Other Renal Outcomes

Abraham
1990 [38]

Hennepin
County
Medical Center
Minneapolis
Minn (USA)

Epoetin α (50–
150 U/Kg 3X/w)
to raise Hct to
37% vs 29%.

8–12 weeks to
raise Hct then
patients
received ESA

Placebo (unspecified) N = 8:
ESA(4),
control(4)

L: 9.3 vs 9.7
H: 10.7 vs
12.3

After 18 weeks there was
no difference in the 1/sCr
curves and no difference in
protein excretion

Clyne 1992
[39]

Karolinska
Hospital,
Danderyd
Hospital
Stockholm
(Sweden)

Epoetin β (300
U/kg) 1X/week to
raise Hb from 8.6
to 11.7 g/dL

12 weeks Placebo (unspecified) N = 22:
ESA(12),
control(10)

L: 9.3 vs 9.4
H: 8.7 vs 11.3

No change in eGFR in
either group. No significant
difference in change in sCr

Kleinman
1989 [40]

Valley
Presbyterian
hospital, Van
Nuys California
(USA)

ESA (100 U/kg,
3x/week) to raise
hct from 28 to
38–40%

12 weeks Placebo (unspecified) N = 14:
ESA(7),
control(7)

L: 9.4 vs 9.4
H: 9.4 vs 11.9

No difference in sCr or
change in sCr

Kuriyama
1997 [41]

Saiseikai
Central
hospital, Tokyo
Japan

Epoetin β (6000
U/week) to raise
hct from 25.5 to
35.5%

36 weeks No ESA N = 108:
ESA(42),
control(66)

L: 9.3 vs 8.4
High Hb
control
12.0 vs 10.7
H: 9.0 vs 11.8

Time to a doubling in sCr
significantly slower in the
ESA group.

Lim 1989
[42]

University of
Iowa Hospitals’
Renal Clinic,
Iowa (USA)

ESA (50, 100, or
150 U/kg 3X/
week)

8 weeks Placebo (unspecified) N = 13:
ESA(11),
control(2)

L: 9,0 vs 12.7
H: 9.0 vs 8.0

No change in renal
function over 2 months in
ESA group

Lim 1990
[43]

University of
Iowa Hospitals’
Renal Clinic,
Iowa (USA)

Epoetin α 3X/
week, later
switched to 1X/
week to raise Hct
from 28 to 36%

11.8 ±
6.8 months
(range 2.8-23.8)

No ESA N = 20:
ESA(10),
control(10)

L: 11.0 vs 9.0
H: 9.3 vs 12.0

The rate of change in sCr
was similar over 12 months

Revicki 1995
[18]

USA Epoetin α (50 U/
kg, 3X/week)
then titrated to
increase Hct from
27 to 35%.

48 weeks No ESA N = 83:
ESA(43),
control(40)

L: 8.9 vs 8.6
H: 8.9 vs 10.5

No difference in change in
eGFR after 48 weeks, no
difference in time to
dialysis

Akizawa
2011 [44]

Japan Darbepoetin alfa
(30 ug 1X/week)
to target Hb 11–
13 g/dL.

48 weeks rHuEpo (~4000 U/week)
to maintain Hb at 9–
11 g/dL. All received at
least one dose of ESA

N = 321:
High Hb
(161), Low
Hb (160)

L: 9.2 vs 10.1
H: 9.2 vs 11.9

No difference in 2 years
decline in eGFR

Cianciaruso
2008 [45]

Italy Epoetin α (2000
U 1x/week) to
maintain Hb at
12–14 g/dL

12 months No ESA unless Hb
dropped below 9 g/dL.
2/49 received ESA

N = 95:
High Hb
(46), Low
Hb (49)

L: 11.7 vs
11.4
H: 11.6 vs
12.4

No significant difference in
eGFR or sCr

Drueke
2006 [46]

94 centers 22
countries

Epoetin β to raise
Hb to a target of
13–15 g/dL.
Median was 5000
U 1X/week

48 months Hb targeted to >10.5
g/dL. ESA only if Hb
dropped below 10.5
g/dL. 67% received
ESA during the study.
Median 2000 U 1X/week

N = 603:
High Hb
(301), Low
Hb (302)

L: 11.6 vs
11.4
H: 11.6 vs
13.5

No significant difference in
the last eGFR value before
initiation of dialysis. Time
to initiation of dialysis was
shorter in the high Hb group
at 18 months (P= 0.03).

Gouva 2004
[47]

Greece Epoetin α (50 U/
kg 1x/week) to
raise Hb from 9–
11.6 g/dL to a Hb
target of 13 g/dL

Treatment time
was a median
of 22.5 months
(range 16–24)

No ESA for a median of
12 months (range 7–19),
then no ESA unless Hb
dropped below 9 g/dL.

N = 88:
High
Hb(45),
Low
Hb(43)

L: 10.1 vs
10.3
H: 10.1 vs
12.9

No difference in sCr

Levin 2005
[48]

Canada Epoetin α (2000 U
1X/week) to raise
and maintain Hb
at 12.0–14.0 g/dL

24 months Low Hb (<11 g/dL), 16/
74 received ESA

N = 172:
High
Hb(85) Low
Hb(87)

L: 11.7 vs
11.4
H: 11.8 vs
12.8

No difference in creatinine
clearance. Change in eGFR
slower in the treatment
group (not significant)
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there was no benefit in a phase 3 trial with ESA treat-
ment of stroke patients [70]. Taken together, these ob-
servations suggest that ESAs may not have the broad,
robust, non-hematopoietic protective abilities described
by some investigators, at least not in humans.
The gap between preclinical reports of benefit of

ESAs in animals, and the absence of similar robust
benefit in humans, has several explanations. Dose and
dose regimens may be different, or the animal studies
used homogeneous animal types under controlled con-
ditions that cannot be mimicked in the clinic. Another
possibility is that a benefit may have been unobservable
because of the trial designs used. In this AKI meta-
analysis the subjects were primarily cardiac patients
and did not have only ischemia to the kidney as in ani-
mal studies and therefore may be immune to potential
reno-protective ESA benefits.

There could also be other induced mechanisms that
may confound the outcome data. For example, sepsis
can affect outcomes and blood pressure can increase with
ESA treatment and can negatively correlate with renal
outcomes [71, 72]. However, control of blood pressure did
not affect progression to ESRD in a clinical trial [73].
Alternatively, the beneficial conclusions of preclinical

animal studies need to be reconsidered. There are many
reports in animals showing a lack of effect of ESAs [1, 74].
The reno-protective hypothesis assumes that EPOR is
present, and functional, at significant level on the sur-
face of renal cells. However reports of EPOR presence
are either assumed according to responses in tissue
culture and in animals, or based on western or immu-
nohistochemistry studies with anti-EPOR antibodies
now shown to be nonspecific [75]. Recently a specific
antibody to EPOR was discovered and western blots

Table 4 Anemia correction studies (Continued)

MacDougall
2007 [49]

United
Kingdom

Epoetin α (1000
U 2X/week) to
maintain Hb at
11.0 g/dl. Total
was 190,000 U

3 years No ESA until Hb
dropped below 9 g/dL
(55/132 received ESA;
total 152,000 U

N = 197:
High
Hb(65),
Low
Hb(132)

L: 10.9 vs
10.5
H: 10.8 vs
11.0

No difference in time to
dialysis, creatinine
clearance, change in
creatinine clearance or
death.

Pfeffer 2009
[50]

623 sites in 24
countries

Darbepoetin alfa
0.75 mcg/kg
(Q2W and
switched to QM);
to increase Hb
from 10.4 to
12.5 g/dL.

48 months;
median
duration of
29 months

No ESA until Hb
dropped below 9 g/dL,
46% received 1 or
more doses of ESA

N = 4038.
High
Hb(2012),
low
Hb(2026)

L:10.4 vs 10.6
H: 10.5 vs
12.5

No difference in the renal
composite endpoint

Ritz 2007
[51]

64 centers in
16 countries

Epoetin β (2000
U/week) to a
target Hb of 13–
15 g/dL.

15 months Hb target of 10.5–
11.5 g/dL. 13/82
patients received ESA

N = 172:
High
Hb(89),
Low
Hb(83)

L: 11.7 vs
12.1
H: 11.9 vs
13.5

No effect on the rate of
decrease in creatinine
clearance, change in eGFR
or urine protein

Roger 2004
[52]

Australia and
New Zealand

Epoetin α 1X/
week to increase
Hb from 10 to
13 g/dL

24 months ESA if Hb below 9 g/dL,
8/78 received ESA

N = 155:
High
Hb(75),
Low
Hb(80)

L: 11.2 vs
11.0
H: 11.2 vs
12.2

No difference eGFR or
creatinine clearance at
2 years

Rossert
2006 [53]

93 centers in
22 countries

Epoetin α (25–
100 U/kg 1X/
week) to a Hb
target of 13–
15 g/dL. Median
dose was
4,514 IU/week

4 months Hb
stabilization
then
7.4 months
maintenance
(high Hb) or
8.3 months
(low Hb)

Hb target of 11–12 g/
day. 65/195 received at
least 1 ESA dose. Ave
dose 2,730 IU/week
(333–7667)

N = 390:
High
Hb(195),
Low
Hb(195)

L: 11.5 vs
11.7
H: 11.6 vs
13.9

No significant differences
in rates of decrease in
eGFR

Singh 2006
[54]

130 sites in
USA

Epoetin α 1x/
week to achieve
Hb target of
13.5 g/dL. Ave
11,215 U/week

Median
duration
16 months; 661
patients
(46.2%)
completed
36 months

Target Hb of 11 g/dL
(709/717 received ESA)
Ave dose 6276 U/week

N = 1432:
High Hb
(715), Low
Hb (717)

L: 10.1 vs
11.3
H: 10.1 vs
12.6

No difference in
hospitalization for RRT

Villar 2011
[55]

15 centers in
France

ESA to target a
Hb of 13–14.9 g/
dL. Mean weekly
ESA dose 6028 ±
6729 IU

24 months Target Hb of 11–12.9 g/
dL. Mean dose 1558 ±
1314 UI/week

N = 89:
High Hb
(46), Low
Hb (43)

L: 11.5 vs
11.9
H: 11.4 vs
13.2

No difference in proteinuria
or decline in eGFR (2 years)
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on renal tissue showed few, if any, detectable EPOR
raising further questions about the validity of the
hypothesis [10].
These meta-analyses have limitations. Majorities of in-

cluded trials were small, single center, and had modest
event rates. The anemia correction trials were larger, but
conclusions around direct effects were confounded by
the frequent use of ESAs in the comparator arm, though
trials where the comparator arm did not receive ESAs
similarly showed no benefit. Within each grouping
(CKD progression, AKI, transplantation) there were
differences in patient selection, treatment regimen and
outcome definition. Finally, the meta-analyses were
based on aggregated, not individual patient level data,
which precluded adjustments for confounding factors
such as age and comorbidities.

Conclusions
In contrast to some preclinical studies demonstrating
reno-protection by ESAs in animals, anemia correction,
prophylaxis or post-injury intervention with ESAs pro-
vided no significant clinical reno-protection in humans.
This suggests that ESAs may not have robust, nor repro-
ducible direct, or indirect, benefits on renal function.
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