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Abstract

Background: Cisplatin (CP) is commonly used in the treatment of different types of cancer but nephrotoxicity has
been a major limiting factor. Therefore, the present study aimed to study the possible protective effect of rutin
against nephrotoxicity induced by cisplatin in rats.

Methods: Forty male Wistar albino rats were randomly divided into 4 groups. Rats of group 1 control group
intraperitoneal (i.p.) received 2.5 ml/kg, group 2 CP group received single dose 5 mg/kg cisplatin i.p. group 3 rutin
group orally received 30 mg/kg rutin group 4 (CP plus rutin) received CP and rutin as in group 2 and 3. Kidneys
were harvested for histopathology and for the study the gene expression of c-Jun N-terminal kinases (JNK),
Mitogen-activated protein kinase 4 (MKK4), MKK7, P38 mitogen-activated protein kinases (P38), tumor necrosis
factors alpha (TNF-a), TNF Receptor-Associated Factor 2 (TRAF2), and interleukin-1 alpha (/L-7-).

Results: The cisplatin single dose administration to rats induced nephrotoxicity associated with a significant
increase in blood urea nitrogen (BUN) and serum creatinine and significantly increase Malondialdehyde (MDA) in
kidney tissues by 230 £ 5.5 nmol/g compared to control group. The animal treated with cisplatin showed a
significant increase in the expression levels of the I[-Ta (260%), TRFA2 (491%), P38 (410%), MKK4 (263%), MKK7 (412%)
, INK (680%) and TNF-a (300%) genes compared to control group. Additionally, histopathological examination
showed that cisplatin-induced interstitial congestion, focal mononuclear cell inflammatory, cell infiltrate, acute
tubular injury with reactive atypia and apoptotic cells. Rutin administration attenuated cisplatin-induced alteration in
gene expression and structural and functional changes in the kidney. Additionally, histopathological examination of
kidney tissues confirmed gene expression data.

Conclusion: The present study suggested that the anti-oxidant and anti-inflammatory effect of rutin may prevent
CP-induced nephrotoxicity via decreasing the oxidative stress, inhibiting the interconnected ROS/JNK/TNF/P38 MAPK
signaling pathways, and repairing the histopathological changes against cisplatin administration.
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Background

Cisplatin (CP) is a chemotherapy commonly used in
cancer treatment including head, neck, ovarian, and
testicular cancers [1, 2] but is associated with nephro-
toxicity in 28-36% of patients receiving an initial dose
(50-100 mg/mz) of cisplatin [3]. The accumulation of
high concentrations of cisplatin in the kidneys caused
nephrotoxicity [4]. This serious complication is contrib-
uted to limiting its clinical use. The intermission of cis-
platin remains the only choice in the case of progressive
renal failure [5]. Cisplatin-induced nephrotoxicity
through apoptosis and necrosis [6], vascular factors [7],
and inflammation of the tubules [8]. The development
of renal tubule injury is caused by the oxidative stress in-
duced by cisplatin [9-12]. The reactive oxygen species
(ROS) and reactive nitrogen species (RNS) production
[13] alter the structure and function of cellular mem-
branes [14]. In addition to their accumulation in kidney
and lysosomes [15] explained the mechanisms for CP-
induced acute nephropathy [13]. Although numerous
mechanisms for CP-induced nephrotoxicity such as
mitochondrial dysfunction, inflammation, DNA damage,
oxidative stress and apoptosis had been studied, the pre-
cise mechanism is not well understood [16, 17]. There-
fore, the free radical scavengers and the antioxidants
agent can prevent cisplatin-induced nephrotoxicity.

Cisplatin damages the DNA resulting in apoptosis in-
duction [18]. In response to cisplatin, several signaling
pathways, which can be activated by lipid peroxidation
and oxidative stress, modulate the cell survival or apop-
tosis [18, 19]. The mitogen-activated protein kinase
(MAPK) pathways regulate differentiation, proliferation,
apoptosis and are activated by chemical and physical
stresses [20]. The three major MAPK pathways termin-
ate in ERK, p38, and JNK/SAPK enzymes. Cisplatin is
known to activate these three pathways in various cell
lines including renal epithelial cells [21, 22]. p38 MAPK
was involved in inflammation, cell cycle regulation, and
differentiation [23] but its role in cancer therapy is not
clear. Recently, some investigator suggests that p38
MAPK is able to control the p53-mediated response to
cisplatin [24].

The interleukin-1 (IL-1) made up of 11 proteins
encoded by 11 different genes [25] and its main func-
tion, in response to tissue injury or damage, is to control
the pro-inflammatory reactions [26]. Activation of IL-1
lead to activation of some genes such as Mitogen-
activated protein kinase kinase 4 (MKK4) and (MKK?7)
which activate JNK [27, 28], and MKK4, MKK3, and
MKK®6 activate p38 MAPK [29].

Flavonoids are a group of natural poly-phenolic com-
pounds found in plants and have a variety of biological
effects and play important role in detoxification of free
radicals [30]. Rutin is flavonoid glycosides that are
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present in herbs and plant foods and possessed different
protective effects in vitro as well as in vivo [31, 32]
against lipid peroxidation and oxidative stress-mediated
diseases [33]. Rutin is an immuno-modulator and has anti-
oxidant, anti-diarrheal, anti-tumor, and anti-inflammatory
effect, myocardial protection, and has renal protective ef-
fects against the ischemia-reperfusion-induced renal injury
[34]. Therefore, this study investigated the possible protect-
ive effects of rutin against cisplatin-induced nephrotoxicity
in rats.

Methods

Animals

The study was approved by the Research Ethics Com-
mittee of the College of Pharmacy, King Saud University.
Male Wistar rats (230-260 g) were obtained from
College of Pharmacy, King Saud University Animal Care
Center and were kept under standard conditions of
temperature (22 + 1 °C), humidity (50-55%), and a 12-h
light:/dark cycle. Food and water were freely available.
All methods were conducted in accordance with the
Guide for Care and Use of Laboratory Animals, Institute
for Laboratory Animal Research, National Institute of
Health (NIH publication No. 80-23; 1996).

Chemicals

Cisplatin (1 mg/ml sterile concentrate) was a gift from
King Khalid University Hospital drug store, KSU, KSA.
Rutin (CAS Number 207671-50-9) was purchased from
Sigma Chemicals (Sigma-Aldrich Louis, MO, USA).
Primers were designed using primer express 3 software
(Applied Biosystem, Life Technologies, Grand Island, NY,
USA) and Syber Green master mix kit (Cat#4309155)
were purchased from Applied Biosystems (Life Technolo-
gies, Grand Island, NY, USA).

Experimental design

The experimental Design follows Kamel et al.,, [3]. The
rats were randomly divided into four groups (ten rats
each) as follows: Group-I: intraperitoneal (i.p.) received
saline (2.5 ml/kg) (normal control group). Group-II: i.p.
received single dose 5 mg/kg cisplatin, (cisplatin group)
[35]. Group-III: orally received 30 mg/kg rutin dissolved
in water for 14 days (Rutin group) [36]. Group-IV: orally
received 30 mg/kg rutin, dissolved in water for 14 days
with a single dose of cisplatin (5 mg/kg, ip.) on the
tenth day.

All animals were weighted and were exposed to ether
and were killed by decapitation 24 h after the last
treatment. Blood samples were obtained and sera were
separated. The kidney was immediately removed then
washed with ice-cold saline solution. Parts of both kid-
neys were cut into small pieces for histopathological
study and for the gene expression analysis.
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Bioassays

Determination of blood urea nitrogen and serum creatinine
Blood urea nitrogen (BUN) was measured spectrophoto-
metrically according to the methods of Tobacco et al
[37]. In brief, serum was diluted 1:4 in normal saline and
5 pL of diluted serum and standard (in duplicate) were
added to the microplate wells; then 150 pL of urease
Mix solution was added to each well. The plate was incu-
bated for 15 min under shaking at room temperature.
Then 150 pL of Alkaline Hypochlorite was added to each
well. After 10 min’ incubation at room temperature.
Measure the absorbance of each sample in duplicate at
620 nm using microplate reader. The blood urea nitrogen
concentration was calculated from stander curve. Serum
creatinine was measured according to the methods of
Fabiny and Ertingshausen [38] in brief, 100 ul of serum
samples and standard was mixed with picric acid
(17.5 mmol/1 final concentration)/sodium hydroxide solu-
tion (0.16 mol/l final concentration) after 30 s and 2 min
later the absorbance of standard and sample were
recorded. After that, the creatinine concertation was
calculated by dividing the delta absorbance of the sample
by delta absorbance of the control multiply by standard
concentration.

Histopathology examination

The kidneys harvested from each groups were fixed in
10% neutral buffered formaldehyde. Tissues dehydration,
clearing in xylene and paraffin embedding was done ac-
cording to the standard method. Sections were cut by a
rotary microtome at 5-7 pum thick, and were stained by
haematoxylin and eosin and periodic acid schief (PAS).
Sections were examined under a light microscope and
findings documented by two certified histopathologists.

Estimation of Malondialdehyde of lipid peroxidation

Malondialdehyde (MDA) concentration in tissues was
measured as it is the major product of membrane lipid
peroxidation as a previously described method by
Ohkawa et al., [39]. The principle of this method de-
pends on the formation of pink color resulted in

Table 1 Primers used in this study
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reaction between MDA and thiobarbituric acid. This re-
action producing a thiobarbituric acid reactive substance
(TBARS), pink color, measured spectrophotometrically
at 532 nm.

Estimation of (glutathione) GSH levels in kidney tissues
Glutathione concentration in 200 g kidney tissues hom-
ogenate was determined as previously described method
by Sedlak and Lindsay [40].

RNA extraction and Gene expression studies

Total RNAs were extracted from kidneys tissue by Trizol
method according to the manufacturer’s protocol as pre-
viously described [41]. The quantity was characterized
using a UV spectrophotometer. The isolated RNA has
an A 260/280 ratio of 1.9-2.1.

cDNA synthesis and real-time PCR methods

One microgram of total RNA was used to generate
c¢DNA using a SuperScript™ first-strand synthesis system
kit (Invitrogen, CA, USA), according to the manufac-
turer’s instructions. Real-time PCR was done using 2~
AACE method according to our previous study [42] and
GAPDH gene was used as internal control. All primers
used in this study were synthesized in Jena Bioscience
Germany and were listed in Table 1.

Statistical analysis

The data were analyzed using GraphPad Prism 5
(GraphPad Software, Inc., La Jolla, CA, USA). Statistical
significance was evaluated by one-way analysis of vari-
ance (ANOVA) followed by the Tukey-Kramer multiple
comparison tests. All data were expressed as
mean + SEM, n = 10. The value of P < 0.05 was consid-
ered statistically significant.

Results

Effects of CP on renal cells

The effects of CP and rutin on histological changes in
kidney tissues are shown in Fig. 1. The harvested kidneys
from the control and treated rat kidneys were studied

Gene Name Forward primer Reverse primer

INK 5-AAATAGAGCATCCCAGTCTTCGA-3" 5-ACTGGGCCGCTGTTTCTG-3'

MKK4 5'- CATCGGGCCTCCAGCTT -3 5'- AAATTCAACTTCAGGGCTTTGC -3'

MKK7 5'- AAGCTCTGTGACTTTGGCATCA -3' 5'- CAGCCAGCACTCCGTGTTT -3'

P38 5-GGTTTTGGACTCGGATAAGAGGAT-3' 5-GGGTCGTGGTACTGAGCAAAG-3'

TRAF2 5'-ACGCTGCCCGCAGAGA-3' 5-TCTTTCAAGGTCCCCTTCCA-3'

TNF-a 5-CGGGCTCAGAATTTCCAACA-3' 5-CGCAATCCAGGCCACTACTT-3'

IL-1-a 5"-CATCCGTGGAGCTCTCTTTACA-3' 5-TTAAATGAACGAAGTGAACAGTACAGATT-3'

5"-AACTCCCATTCCTCCACCTT-3'

5-GAGGGCCTCTCTCTTGCTCT-3
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Fig. 1 Histological changes in renal tissues in response to cisplatin, rutin, and cisplatin plus rutin: a and b: photomicrographs of control rat kidney shows
normal looking glomeruli (arrows) and the tubules (arrowheads) with no histological abnormality (hematoxylin-eosin stain, original magnification: x200 and
%400 respectively). ¢: photomicrograph of rat kidney treated with rutin also show no significant pathological changes. d, e and f: photomicrographs of rat
kidney treated with Cisplatin shows patchy lymphoplasmacytic mononuclear chronic inflammatory cell infiltrate in the interstitium (arrows) and patchy
mild acute tubular epithelial cell injury (arrowheads) and scattered congested interstitial capillaries (hematoxylin-eosin stain, original magnifications: x200,
x400 and x400 respectively). g and h: more photomicrographs of rat kidney treated with Cisplatin showing reactive/reparative atypia of the injured
tubular epithelial tubular cell in the form of enlarged nuclei and prominent nucleoli (arrow), many apoptotic tubular epithelial cells (arrowheads) along with
focal cytoplasmic vacuolization the tubular epithelial cells (asterisk) (hematoxylin-eosin stain, original magnifications: x400 and x400 respectively). i:
photomicrographs of rat kidney treated with Cisplatin and Rutin combination shows minimal focal tubular injury of few tubules (arrows) and minimal
congestion of the interstitial capillaries (arrowhead) (hematoxylin-eosin stain, original magnification: x400)

under a light microscope. The four compartment in the
kidney, namely, glomeruli, tubules, interstitium and
blood vessels were examined for any histopathological
findings. The kidney in the control rats (GI) showed no
histopathological abnormality in the glomeruli, tubules,
interstitium and blood vessels (Fig. la and b). Rats
treated with rutin dissolved in water (GII) also showed
normal histology with no histopathological findings (Fig.
1c). The kidneys treated with Cisplatin showed histo-
pathological abnormality in the interstitium and the tu-
bules infiltrate (Fig. 1d to h). The interstitium showed
patchy mild chronic mononuclear lymphoplasmacytic
inflammatory cell infiltrate and mild congestion. The tu-
bules showed patchy acute tubular injury with reactive/
reparative atypia of the tubular epithelial cells. Some
tubular epithelial cells also showed cytoplasmic
vacuolization and apoptosis. The glomeruli and the
blood vessels were not affected. Rats treat with Rutin
and Cisplatin combination showed only minimal
histopathological findings in the form of minimal
interstitial congestion and minimal tubular injury in a

few tubules. The glomeruli and the blood vessels
appeared normal.

Effect of CP on the body weight of rats

Figure 2 showed the effect of Cisplatin, rutin and their
combination on the rat body weight. At the end of the
experiment, CP-treated animals significantly lost weight
compared to control group (P < 0.05). However, admin-
istration of rutin alone resulted in an increase in the
body weight compared to both control and cisplatin
group. Interestingly, administration of rutin in combin-
ation with CP resulted in a significant increase the body
weight compared to CP group (p < 0.05).

Effects of CP on renal blood urea nitrogen and serum
creatinine

Blood urea nitrogen (Fig. 3a) and serum creatinine (Fig.
3b) were used as biochemical markers for the nephro-
toxicity. CP significant increased the levels of BUN
(128.6 + 44 mg/dl) and serum creatinine (4.6 + 0.34 mg/
dl), compared to control group 37 + 2.4 mg/dl and
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Fig. 2 Represent the effect of CP alone, Rutin alone and their
combination on the rat body weight. Data were presented as
mean + SEM (n = 10). * indicate significant change from control, #
indicate significant changes from rutin and $ indicate a significant
change Cisplatin plus Rutin

1.2 £ 0.1 mg/dl respectively (p < 0.00I). The rutin group
showed no significant changes in BUN and serum cre-
atinine compared to control group. However, adminis-
tration of rutin in combination with CP resulted in
complete reversal of CP-induced increase in BUN and
serum creatinine to their normal values as in control

group.

Assessment of renal oxidative stress

Oxidative stress-induced free radicals that reacted with
membrane phospholipids resulted in lipid peroxidation.
To investigate the effect of CP, rutin and their combin-
ation on the lipid peroxidation biomarkers the MDA
level was measured. Cisplatin significantly increased
MDA levels in kidney tissue by 230 + 5.5 nmol/g com-
pared to 68 + 2.1 nmol/g in control group (P < 0.001).
Interestingly, the administration of rutin before cisplatin
resulted in a reversal of MDA level induced by CP to its
normal values as in control group. Administration of
rutin alone showed non-significant changes in MDA
levels (70 + 1.8 nmol/g) compared to control group.
Also, the free radicals depleted the antioxidant defense
GSH. Rats treated with CP had a significant decrease in
GSH level by 25 + 6.8 nmol/100 mg tissue compared to
102 + 3.5 nmol/100 mg tissue in control group. On the
other hand, the administration of rutin before CP lead to
increase in the GSH levels from 25 + 6.8 nmol/100 mg
tissue in CP group to 120 + 3.6 nmol/100 mg tissue
(p < 0.05). Administration of rutin alone showed non-
significant changes in MDA levels 107 + 2.3 nmol/
100 mg tissue compared to the control group.
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Fig. 3 Represents the changes in the levels of serum BUN (a) and
creatinine (b) in rats. Data were presented as mean + SEM (n = 10).
* indicate significant change from control, # indicate significant
changes from rutin

The effect of CP on the gene expression levels

To investigate the effect of CP on oxidative stress
genes expression levels of IL-1a was measured in kid-
ney tissues by using real-time PCR (Fig. 4). CP alone
was significantly increased the expression level of IL-
Ia in kidney tissues by 260% (P < 0.05) and 164%
(P < 0.001) compared to control and rutin groups re-
spectively. Interestingly, administration of rutin to
CP-treated rats resulted in a complete reversal the re-
duction of IL-la expression level induced by CP to
control values. This reversal change was resulted in
significant decrease in IL-a expression level by 63%
(p < 0.007) compared to CP group and by 73% com-
pared to control group.
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Fig. 4 Represents the changes in the expression level of /-1a in Rat
kidney tissues induced by CP. Data were presented as mean + SEM

(n = 10). * indicate significant change from control, # indicate significant
changes from rutin and $ indicate a significant change Cisplatin

plus Rutin

Figure 5 showed the effect of CP, rutin and their com-
bination on TRAF2 expression level in Rat kidney tissues.
Cisplatin alone significantly increased the expression level
of TRAF2 in kidney tissues by 491% compared to control
group (P < 0.001). However, administration of rutin alone
resulted in insignificant increase in TRAF2 expression
level by 77% compared to control groups (P > 0.5). Inter-
estingly, administration of rutin in combination with CP

e $

Relative Expression
TNF receptor-associated factor 2
B

Fig. 5 Represents the changes in the expression level of TRAF2 in Rat
kidney tissues induced by CP. Data were presented as mean + SEM
(n = 10). * indicate significant change from control, # indicate
significant changes from rutin and $ indicate a significant change
Cisplatin plus Rutin
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resulted in significant decrease in the expression level of
TRAF2 compared to CP group (p < 0.002).

Figure 6 showed the effect of CP, Rutin and their com-
bination on the expression levels of P38 in rat kidney tis-
sues. Treatment of CP alone resulted in significant
increase in the P38 expression level by 410% (P < 0.001)
in kidney tissues compared to control group. Adminis-
tration of rutin alone resulted in insignificant increase in
the P38 expression levels by 38% compared to control
group (P < 0.5). Administration of rutin in combination
with CP resulted in significant decrease in the P38 ex-
pression level compared to both control and CP groups
(P < 0.001).

Figure 7 showed the effect of CP, Rutin and their com-
bination on the expression level of MKK4 (A), MKK7
(B) and JNK (C) in kidney tissues. CP alone resulted in
significant increase in MKK4 expression level by 236%
(P < 0.00I) in MKK7 by 412% and in JNK by 680%
(P < 0.00I) compared to control group. Interestingly,
rutin administration in combination with CP resulted in
complete reversal of CP-induced increasing in the
expression levels of both MKK4 and MKK7 to their nor-
mal levels as in control group. On the other hand rutin
administration in combination with CP resulted in sig-
nificant decrease in the expression levels of /NK by 71%
compared to CP group. There were no significant
changes observed in both MKK4 and MKK7 in rutin
group.

Figure 8 showed the effect of CP, Rutin and their
combination on the expression level of TNF-« in kidney
tissues. CP alone was resulted in significant increase in
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Fig. 6 Represents the changes in the expression level of P38 in Rat
kidney tissues induced by CP. Data were presented as mean + SEM
(n = 10). * indicate significant change from control, # indicate
significant changes from rutin and $ indicate a significant change
Cisplatin plus Rutin




Alhoshani et al. BMC Nephrology (2017) 18:194

Page 7 of 10

a
<
s
®©
£ 4
x 4
9 4
c®© I
o c
n X 34
3£
s 2
X0 ,l
w S
o
(]
> O
- 9
SF 1 -
[
“3
g c T T T T
> D & & S
b3 & & R R
2 o° Qg) c,Q\'b Q~°
€ O ¢ x
9) é}o
&
0\
~
[
T
£
3 e 8
2] X
c
S £
n =
8 £ 4
[3)
23
w =
P o
> T 24
£2
8w
é 2
E
s c T T T T
=] o N N N
° & Q O Q
g & & & &
€ (¢ &
@&
R
0\
(o
m10- )
c & #3
O c 8 I
g3
‘E_.S 6
TR *
= P4
£5 7 _
3
O c T T T T
"N
o N N N
& R KN R
& Q& .gQ\'b QQ
(¢) ¥ Ox
N
Q\'b
®

Fig. 7 Represents the changes in the expression level of MKK4 (a),
MKK7 (b) and JNK (c) in Rat kidney tissues. Data were presented as
mean + SEM (n = 10). * indicate significant change from control, #
indicate significant changes from rutin and $ indicate a significant
change Cisplatin plus Rutin

TNF-a expression level by 300% (P < 0.001) compared
to control group. Interestingly, rutin administration in
combination with CP was resulted in complete reversal
of CP-induced increasing in the TNF-a expression levels
to its normal levels as in control group. There were no
significant changes observed in TNF-a in rutin group.

Discussion

Cisplatin is an anticancer drug used in the treatment of
many types of cancer such as head and neck, lung, testis,
ovary, and breast cancers [1, 2]. Nephrotoxicity is the
dose-limiting side effect of cisplatin [43] such as acute
kidney injury was found in about 20-30% of patients
receiving CP [44], Hypo-magnesemia in about 40—100%
of patients [45], Fanconi-like syndrome, distal renal
tubular acidosis, hypo-calcemia, renal salt wasting and
hyper-uricemia [46].

Nephrotoxicity induced by CP is characterized by a re-
duction in renal function that leads to increasing in
serum creatinine and blood urea levels [47]. In the
current study, creatinine and BUN serum levels were
significantly high in CP-treated rats compared to un-
treated rats suggesting that CP produced nephrotoxicity
as evidenced by the glomerular filtration rate reduction.
The elevated serum creatinine and BUN levels induced
by CP were significantly restored to their normal levels
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Fig. 8 Represents the changes in the expression level of TNF-a in
Rat kidney tissues. Data were presented as mean + SEM (n = 10). *
indicate significant change from control, # indicate significant
changes from rutin and $ indicate a significant change Cisplatin
plus Rutin
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as in control group by rutin. The rutin protective effect
against nephrotoxicity can be attributed to its antioxi-
dant and anti-inflammatory effect on ROS and some cy-
tokines may be involved in the glomerular filtration rate
damage [48]. Although the accurate mechanism of CP-
induced nephrotoxicity is not well understood, previous
study suggested that cisplatin interacts with DNA,
through the formation of covalent adducts between cer-
tain DNA bases and the platinum compound leading to
cell cytotoxicity [49]. Other studies suggest that CP-
induced ROS and immune response which are mediators
of nephrotoxicity [50-52]. In the present study, the
MDA and GSH were measured as biomarkers for the
oxidative stress. In the kidney tissue, the MDA level was
significantly increased and GSH level was decreased by
the effect of cisplatin. However, rutin administration
caused significant decreases in lipid peroxidation and
promoted increases in GSH content in the kidney.
Therefore, rutin can protect the kidney from CP-
induced injury via improvement in oxidant status. A
similar study found that rutin pre-treatment attenu-
ates renal inflammation and apoptosis induced by cis-
platin through reducing TNF-a, NFB and caspase-3
levels [18, 25].

The p38-MAPK stress pathway, stimulated with in-
flammatory cytokines such as TNF-a or IL-1, act as a
key regulator of apoptosis in cells [53]. The expression
of the number of inflammatory cytokines and chemo-
kines is increased in the kidney after cisplatin injury
[54]. In the present study, CP increased the expression
levels of both TNF-a or ILI-a. Similarly, other study
found that the single injection of cisplatin in mice in-
duced nephrotoxicity. In the kidneys of cisplatin-treated
mice, the nephrotoxicity caused up-regulation in TNF-a,
IL-1B, macrophage inflammatory protein-2 (MIP-2),
monocyte chemoattractant protein-1 (MCP-1), ICAM-1,
and TGF-f [55].

The present study showed that the rutin supplementa-
tion improved the CP-induced increased in the expression
levels of IL-1 and TNF-a that were in agreement with pre-
vious reports. Rutin acts as antioxidant and anti-
inflammatory and improves renal abnormality induced by
several factors or chemotherapeutic agents like doxorubi-
cin or cisplatin [56-58]. TNF-a induced by cisplatin is
highly dependent upon the production of ROS, activation
of NFxB, and p38 MAPK. However, the activation of TNF-
a and [L-1 are involved in several signal transduction
mechanisms, including the NFiB and AP-1 pathways. In
fact, the stress-activated group of MAPKs (JNK and p38)
is strongly activated by TNF-a and IL-1 [54]. This was in
agreement with the present study in which single dose of
CP increase the expression levels of JNK and P38. The ac-
tivation of JNK by TNF-a mediated by the TNF receptor-
associated factor (TRAF) group of adapter proteins [59].
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In the current study, the overexpression of TRAF2 as a
result of cisplatin may be the cause of nephrotoxicity
and apoptosis. The decrease in the expression level of
TRAF2 in kidney tissues after rutin supplementation in
CP-treated rats suggests that rutin may protect against
CP-induced nephrotoxicity by regulating apoptotic path-
ways. Activation of TNF receptors leads to recruitment
of the TRAF2 adapter protein [60, 61]. The activation of
the TRAF2 expression is required for /NK activation by
TNF [62]. A study showed that in nephrotoxicity in-
duced by chemotherapy, genes for JNK play an essential
role in modulating the pro- and anti-apoptotic proteins
located in the mitochondria [63]. JNK with ROS can
promote apoptosis by inhibiting anti-apoptotic proteins
[64]. Also, /NK can be activated through its phosphoryl-
ation by MKK4 and MKK7 at threonine, tyrosine.
MAPKKK activate both MKK4 and MKK7 protein ki-
nases by dual phosphorylation at two sites in the T-loop
[65]. The MKK7 protein kinase is primarily activated by
cytokines (e.g TNF-a and IL-I1) and MKK4 is primarily
activated by environmental stress [66]. In the current
study CP- induced the expression levels of MKK4 and
MKK?7 and these alterations attenuated by rutin supple-
mentation in CP-treated rats. P38 MAPK is activated by
MKK3, MKK4 and MKK6 [67]. In the present study, P38
expression levels were increased after a single dose of
cisplatin. Similarly, several studies suggested that the in-
hibition of p38 MAPK, ERK or JNK with specific
pharmacologic or genetic inhibitors reduced inflamma-
tion and renal injury [17, 68, 69].

Rutin administration in CP-treated rat restored the ex-
pression levels of P38 and reduced the apoptosis. There-
fore, cisplatin-induced nephrotoxicity can be ameliorated
by free radical scavengers [70], iron chelators [71], super-
oxide dismutase [48] and Vitamin E [72].

Conclusions

In conclusion, single dose of cisplatin-induced nephro-
toxicity through the activation of P38 MAPK pathway.
Our data may help in understanding the molecular
mechanisms of rutin in CP nephrotoxicity. Rutin attenu-
ates CP nephrotoxicity might be through its antioxidant
as well as p38-MAPK inhibitor properties.
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