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Abstract

Background: Cardiovascular (CV) complications are the main cause of death in end-stage renal disease (ESRD)
patients. The high CV risks are attributable to the additive effects of multiple factors. Endothelin (EDN) is a potent
vasoconstrictor and plays a role in regulating vascular homeostasis. However, whether variants of the EDN gene are
associated with risks of CV events is not known. We conducted a study to investigate associations of variants of the
EDN gene with CV events in ESRD patients.

Methods: A cohort of 190 ESRD patients was recruited, and 19 tagged single-nucleotide polymorphisms within the EDN
gene family were selected for genotyping through a TaqMan assay. Data on clinical characteristics and hospitalizations
for CV events were collected. Associations of genetic variants of the EDN gene with CV events were analyzed.

Results: In this cohort, 62% (n = 118) of patients were hospitalized for a CV event. The EDN1 rs4714384 (CC/TC vs. TT)
polymorphism was associated with an increased risk of a CV event after multiple testing (p < 0.001). Further functional
exploration showed that it was a quantitative trait locus which may significantly alter gene expression in the tibial artery.

Conclusions: EDN1 rs4714384 is very likely an important biomarker of CV events in ESRD patients.
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Background
End-stage renal disease (ESRD) patients have a high risk
of mortality, and 50% of these deaths are from cardio-
vascular (CV) complications [1]. Sudden cardiac death is
observed in half of those cases, which is much more
than coronary artery disease (CAD) [2]. Left ventricular
hypertrophy (LVH) is considered to be one of the culprit
pathophysiological expressions. It may contribute to the
excess risk of sudden cardiac death and indicates poor
survival in ESRD patients [3]. Besides LVH, vascular dis-
orders, including atherosclerosis and arteriosclerosis,
also account for the high risk of CV complications [4].
The exact mechanisms responsible for the excess CV
risk in ESRD patients are not well understood.

Traditional and non-traditional risks factors, such as
hypertension, diabetes, dyslipidemia, anemia, uremia,
chronic inflammation, oxidative stress, calcium-
phosphate vascular calcification, and autonomic
dysfunction, contribute to a proportion of the excess risk
[5, 6]. However, combining these risk factors does not
fully explain the excess risk in these patients [5, 7].
Imbalances in some humoral factors and regulatory
systems may also account for the excess CV risk. Activa-
tion of the renin-angiotensin-aldosterone system, and
imbalanced endothelin (EDN) and nitric oxide levels
were reported [8]. Demuth et al. [9] reported that an
increased plasma endothelin level was associated with
LVH and arterial intima-media thickening, suggesting
this humoral factor may be important in cardiovascular
remodeling. Whether genetic variants of candidate genes
are related to the risk of CV disease (CVD) in ESRD
patients is not known.
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The EDN peptide family includes three isoforms (ET1,
ET2, and ET3), which are coded by different genes, lo-
cated on chromosomes 6p24.1 (EDN1), 1p34 (EDN2),
and 20q13.2 ~ 13.3 (EDN3) [10]. Of these isoforms, ET1
is predominant. ET1 was reported to be strongly corre-
lated with CVD, since it has a predominant vasocon-
striction effect and hypertensive effect [10]. It has
myocardial hypertrophic effects, [11] and its expression
in endothelial tissues may be associated with instability
of atherosclerotic plaque [12]. In addition, Minami et al.
[13] reported that the plasma ET1 level was correlated
with asymptomatic lacunar infarct and carotid plaques.
ET2 was reported to be necessary for normal ovulation
[14] and is associated with breast tumor invasion [15].
ET3 was identified as being abundant in the intestines
and pituitary/brain tissues, which indicates it may have
functions in nervous and endocrine systems [16]. Asso-
ciations of genetic variants of the EDN genes with CV
complications in ESRD patients are not well known.
Thus, we investigated genetic variants of the EDN genes
and CV events. We hypothesized that common variants
of the EDN genes are associated with increased risks of
hospitalizations for CV events in ESRD patients.

Methods
Study subjects
This study recruited adult patients older than 18 years,
who had received chronic dialysis for at least 3 months
at Taipei Medical University Hospital. 90% (n = 171) of
patients received hemodialysis and the remaining re-
ceived peritoneal dialysis. Demographics and clinical
data of all patients were collected, including dialysis vin-
tage, smoking, the erythropoietin resistance index (ERI),
hemoglobin, albumin, iron profiles, adequacy of dialysis
(Kt/V), pre-existing CV comorbidities, and cause of
ESRD. ERI was calculated by the average weekly erythro-
poietin dose per kg body weight per average hemoglobin,
which indicated a patient’s response to erythropoietin.
After enrollment, patients were followed up until the de-
velopment of hospitalization for a CV event. The length
of time from study enrollment to the development of
CV event was collected. We defined hospitalized “CV
events” as including CAD, congestive heart failure
(CHF), arrhythmia, aortic aneurysm, stroke, and periph-
eral arterial occlusive disease (PAOD). These outcomes
were prespecified in our protocol. CAD was defined as
patients who received coronary angiography and ≥75%
stenosis of a major coronary artery was noted. Congest-
ive heart failure was documented according to the clin-
ical diagnostic criteria by cardiologist, either by an
episode of pulmonary edema, systolic dysfunction by
cardiac sonography or cardiomegaly. Arrhythmia was
documented as newly onset of irregular heart beat by
electrocardiogram. Aortic aneurysm was confirmed by

aortic imaging via radiographic studies. Stroke was de-
fined as focal neurologic symptoms with image evi-
dences. Peripheral arterial occlusive disease was
documented by symptoms of ischemic muscle pain and
radiographic studies. This study was approved by the In-
stitutional Review Board of Taipei Medical University
(no. 201309026). Written informed consent was ob-
tained from all patients.

Genotyping
These tagged SNPs were determined to have a
minimum allele frequency of >1% in a Beijing Han
Chinese population (https://www.ncbi.nlm.nih.gov/
variation/news/NCBI_retiring_HapMap/). Genotyping
was done using the TaqMan Allelic Discrimination
Assay (Applied Biosystems, Foster City, CA). Polymer-
ase chain reaction (PCR) was carried out with an ABI
StepOnePlus Thermal Cycler (Applied Biosystems).
The fluorescence from different probes was detected
and analyzed via the System SDS software version
2.2.2 (Applied Biosystems).

Statistical analysis
R 3.2.0 was used for the statistical analyses. The Chi-
squared test and Student’s t-test were used for compar-
ing demographic characteristics between groups as indi-
cated. A multivariable logistic regression model was
performed to control for possible confounding factors,
including age, gender, smoking, diabetes, hypertension,
pre-existing CV comorbidities, hemoglobin, albumin,
ferritin, and the ERI. We analyzed the magnitude of the
association between the different genotypes and
hospitalization for a CV event through a likelihood ratio
test. Odds ratios (OR) with 95% confidence intervals
were determined. Multiple testing correction was carried
out using the false discovery rate (FDR), and q-values of
<0.05 were determined to indicate statistical significance.

SNP functional annotation
In order to evaluate the relationship between the SNPs
and gene expression profiles, we queried the GTEx
Portal (https://www.gtexportal.org/home/), which con-
tain expression quantitative trait loci (eQTLs) across
multiple tissues. The SNP function prediction web site
(https://snpinfo.niehs.nih.gov/snpinfo/snpfunc.html),
which provides a variety of possible downstream influ-
ence of variants, was also applied to identify potential
impact of candidate SNPs.

Results
In total, 19 tSNPs of the EDN family (EDN1: rs5370,
rs2070699, rs2248580, rs4714384, and rs3087459; EDN2:
rs2759257, rs11210278, rs11572340, and rs11572377;
and EDN3: rs742650, rs260740, rs260741, rs6064764,
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rs197173, rs197174, rs882345, rs926632, rs3026575, and
rs11570352) were genotyped (Fig. 1a-c). The minor allele
frequencies of these tSNPs were close to those of the
reference population from the Taiwan Biobank database
and HapMap project (Table 1).
In total, 190 patients were recruited for this study. The

length of follow-up for the entire cohort was 22.9 +/−
10.6 months. The mean age was 64 years, and 54% of
them were male. Pre-existing CV events were found in
43 patients with more than 83% due to CHF (n = 16,
37%) and CAD (n = 20, 47%). After enrollment, there
were 118 patients (62.1%) who experienced
hospitalization for a CV event with a mean duration of
17.2 ± 8.8 months. Of these CV events, CAD and CHF
remained the most commonly observed (Additional file
1: Table S1). We divided patients into study and control
groups according to the development of CV events.
Patients in the study group included more males, were
older, and had more diabetes. Lower albumin, serum
iPTH, and Kt/V levels were observed in study group
patients (Table 2).
After multivariable adjustment, we found that patients

carrying EDN1 rs2248580 (AA/CA vs. CC), rs2070699
(GT/TT vs. GG), rs4714384 (CC/TC vs. TT) (Table 3),
EDN2 rs11210278 (TC/CC vs. TT) (Table 4) were asso-
ciated with an increased risk of being hospitalized for a
CV event in the recessive models. All of the EDN1 vari-
ants remained statistically significant after multiple test-
ing correction (q values of 0.013, 0.003, and <0.001).

However, none of EDN3 SNPs showed significant associ-
ation with the susceptibility of developing cardiovascular
disease (Table 5). In addition, we conducted functional
annotation for these SNPs via several publicly available
databases. The results showed that EDN1 rs4714384 is
an eQTL in the tibial artery tissue (p = 6.3*10−9)
(Table 6). We further analyzed the association of EDN1
rs4714384 with each CV comorbidity, which showed
non-significant findings (Additional file 1: Table S2).

Discussion
In this study, we systemically performed genotyping of
the EDN gene family, and three variants in the EDN1
gene [rs2248580 (AA/CA vs. CC), rs2070699 (GT/TT
vs., GG), and rs4714384 (CC/TC vs. TT)] were associ-
ated with an increased risk of a CV event. These tSNPs
were not located in the exon region, and therefore were
not correlated with protein-coding functions. These gen-
etic variants may alter disease phenotypes through other
pathways, such as non-coding RNA, transcriptional
regulation, or alterations in splicing [17]. Although there
is no eQTL evidence between rs4714384 and EDN1
being observed in the current database due to limited
available tissue specific profile, we found that rs4714384
has impact on RN7SKP293 expression in the tibial
artery. The RN7SKP293 is a pseudogene, belonging to
the 7SK RNA class. 7SK RNA is found in a small nuclear
ribonucleoprotein (snRNP) complex, which regulates the
activity of positive transcription elongation factor b (P-

Fig. 1 a. Graphic view of the genotyped human EDN-1 gene. b. Graphic view of the genotyped human EDN-2 gene. c. Graphic view of the genotyped
human EDN-3 gene
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TEFb) [18]. P-TEFb is a kind of cyclin-dependent kinase
(Cdk) which controls the elongation phase of transcrip-
tion by RNA polymerase II [19]. Cdk is a cell-cycle
check point regulator, and one study showed Cdk9 may
have transcriptional roles in cardiac hypertrophy and
mitochondrial dysfunction [20]. Another study showed
overexpression of Cdk2 may promote smaller, less differ-
entiated cardiomyocytes which have increased response
to pressure overload [21]. Cdk dysregulation may be re-
lated to LVH, which may result in future CHF. Endothe-
lial cells are the main origin of ET-1 production.
Endothelial dysfunction is an important pathophysiology
in ESRD patients, and is strongly associated with a risk
of atherosclerosis and consequent CV events [22]. Its
manifestations represent a systemic pathogenic condi-
tion, which implies an inflammatory state, prothrombo-
tic state, and impaired vasomotor and cellular
proliferation in the vascular wall [23]. Imbalances of
humoral factors, including nitric oxide, oxidative stress,
chemokines, angiotensin II, and EDN-1, on vascular
homeostasis may contribute to this condition [22]. In
addition, Ganz et al. [24] reported that the peripheral
artery endothelial function has rather better prognostic
predictions of CV events than coronary artery endothe-
lial function. Our findings suggest that genetic variants
of EDN1 may alter the balance of the homeostasis of
peripheral vascular regulation, and affect the susceptibil-
ity to CV comorbidities.

Table 1 Minor allele frequencies of selected tagged single-nucleotide polymorphisms (SNPs) of the endothelin (EDN) gene family

Gene Position SNP Location Ref Alt AFR fre AMR fre ASN fre EUR fre TWB fre Our fre

EDN1 Ch6:12,289,406 rs3087459 5’UTR A C 0.19 0.14 0.20 0.20 0.23 0.17

Ch6:12,291,749 rs2248580 Intron C A 0.08 0.56 0.56 0.47 0.41 0.35

Ch6:12,292,539 rs2070699 Intron G T 0.05 0.46 0.56 0.47 0.49 0.43

Ch6:12,296,022 rs5370 Missense G T 0.14 0.17 0.28 0.21 0.31 0.23

Ch6:12,297,620 rs4714384 3’UTR T C 0.71 0.38 0.62 0.37 0.38 0.34

EDN2 Ch1:41,485,234 rs11572340 5’UTR C A 0.04 0.16 0.07 0.21 0.06 0.02

Ch1:41,484,301 rs11210278 Intron C T 0.01 0.11 0.33 0.19 0.30 0.29

Ch1:41,483,957 rs2759257 Intron A C 0.75 0.89 0.91 0.86 0.88 0.93

Ch1:41,478,124 rs11572377 3’UTR C G 0.01 0.01 0.08 0.02 0.09 0.05

EDN3 Ch20:59,303,616 rs742650 Intron C T 0.00 0.03 0.15 0.06 0.14 0.11

Ch20:59,301,100 rs260741 Intron G A 0.06 0.31 0.24 0.21 0.25 0.27

Ch20:59,305,927 rs260740 Intron T G 0.28 0.25 0.22 0.28 0.22 0.15

Ch20:59,303,025 rs197174 Intron T C 0.63 0.30 0.16 0.26 0.16 0.12

Ch20:59,303,536 rs197173 Intron T G 0.96 0.67 0.72 0.85 0.74 0.74

Ch20:59,309,196 rs6064764 Intron T C 0.03 0.20 0.07 0.32 0.09 0.10

Ch20:59,309,707 rs926632 Intron C T 0.42 0.70 0.85 0.70 0.87 0.89

Ch20:59,319,323 rs882345 Intron A G 0.10 0.16 0.15 0.19 0.13 0.09

Ch20:59,324,630 rs3026575 3’UTR G A 0.00 0.00 0.05 0.00 0.04 0.14

Ch20:59,324,605 rs11570352 3’UTR C T 0.00 0.00 0.05 0.00 0.06 0.06

Fre Alt frequency, UTR untranslated region

Table 2 Baseline characteristics of study patients according to
cardiovascular disease (CVD)

CVD (n = 118) No CVD (n = 72) p value

Gender, male, n (%) 74 (62.7%) 29 (40.3%) 0.003

Age (years) 67 ± 13 60 ± 12 <0.001

Dialysis vintage (years) 4.3 ± 3.8 5.5 ± 6.7 0.111

Current smoking (%) 20 (16.9%) 5 (6.9%) 0.050

Diabetes, n (%) 73 (61.9%) 17 (23.6%) <0.001

ERI (unit/week/kg/Hb) 8.5 ± 6.7 8.0 ± 4.1 0.600

Hemoglobin (g/dl) 10.7 ± 1.2 10.7 ± 1.1 0.980

Albumin (g/dl) 3.9 ± 0.4 4.1 ± 0.4 0.005

Ferritin (mg/dl) 418 ± 401 458 ± 736 0.635

Iron (mg/dl) 65 ± 24 68 ± 33 0.571

TIBC (mg/dl) 236 ± 47 242 ± 54 0.441

Serum i-PTH (pg/mL) 277 ± 363 422 ± 354 0.012

Kt/V 1.44 ± 0.26 1.60 ± 0.31 0.001

Cause of ESRD, n (%) <0.001

Hypertension 16 (13.5%) 18 (25.0%)

Diabetes 67 (56.8%) 17 (23.6%)

GN 14 (11.9%) 22 (30.6%)

CHF 8 (6.8%) 0 (0%)

Others 13 (11.0%) 15 (20.8%)

CHF congestive heart failure, ERI erythropoietin resistance index, ESRD end-stage
renal disease, GN glomerulonephritis, iPTH parathyroid hormone, Kt/V dialysis
adequacy, TIBC total iron-binding capacity. p values of <0.05 are shown in bold
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We further investigated EDN gene expressions among
different tissues through GTEx. However, low expression
levels of both EDN2 and EDN3 were noted in the
heart and major vessel tissues [25]. By querying the
SNP function prediction web site, we found that
rs11210278 (caTAATCgag) is a potential binding site
for GATA6, which is a transcription factor involved
in hypertrophic cardiomyopathy (Additional file 1:
Table S3). This finding may be correlated with our

finding, since the C allele of the rs11210278 is a pre-
dominant binding site for GATA6; therefore, patients
carrying this allele may confer an increased binding
affinity of the GATA6 transcription factor and
consequently increased risk of hypertrophic cardiomy-
opathy. Cardiomyopathy is an important pathophysi-
ology of CV events in ESRD patients [5]. Although
this allele was not statistically significant after mul-
tiple testing correction, further enlarging sample sizes

Table 3 Association analysis of genetic polymorphisms of the EDN1 gene and cardiovascular disease susceptibility in end-stage
renal disease patients

Cardiovascular disease susceptibility Recessive

rs number Genotype Cases (%) Control (%) OR (95% CI) p value q-value

rs3087459 CC 3 (3%) 3 (5.8%) 0.06 (0.01–0.69) 0.019 0.086

CA 26 (25.7%) 13 (25%) 1

AA 72 (71.3%) 36 (69.2%) 1

rs2248580 CC 8 (7.8%) 12 (21.8%) 0.10 (0.02–0.47) 0.001 0.013

CA 49 (48.0%) 22 (40.0%) 1

AA 45 (44.1%) 21 (38.2%) 1

rs2070699 GG 11 (11.7%) 16 (29.6%) 0.09 (0.02–0.38) <.001 0.003

GT 50 (53.2%) 22 (40.7%) 1

TT 33 (35.1%) 16 (29.6%) 1

rs5370 TT 5 (2.5%) 4 (10.0%) 0.30 (0.04–2.08) 0.216 0.388

TG 32 (40.0%) 20 (32.2%) 1

GG 61 (57.5%) 28 (57.8%) 1

rs4714384 TT 7 (7.2%) 14 (26.9%) 0.05 (0.01–0.23) <.001 <.001

TC 42 (43.3%) 17 (32.7%) 1

CC 48 (49.5%) 21 (40.4%) 1

p values were adjusted for age, sex, smoking, diabetes, hypertension, pre-existing cardiovascular events, hemoglobin, albumin, ferritin, and the erythropoietin resistance index.
p and q-values of <0.05 are shown in bold. q-values of <0.05 were considered statistically significant after correction for multiple testing. OR, odds ratio; CI, confidence interval

Table 4 Association analysis of genetic polymorphisms of the EDN2 gene and cardiovascular disease susceptibility in end-stage
renal disease patients

Cardiovascular disease susceptibility Recessive

rs number Genotype Cases (%) Control (%) OR (95% CI) p value q-value

rs11572340 AA 1 (0.9%) 0 (0%) 0.74 (0.14 ~ 3.85) 0.708 0.796

AC 5 (4.3%) 2 (2.9%) 1

CC 109 (94.8%) 66 (97.1%) 1

rs11210278 TT 8 (9.9%) 7 (18.9%) 0.17 (0.03 ~ 0.88) 0.035 0.126

TC 30 (37.0%) 9 (24.3%) 1

CC 43 (53.1%) 21 (56.8%) 1

rs2759257 AA 0 (0%) 0 (0%) - NA NA

AC 17 (15.3%) 6 (9.4%) 1

CC 94 (84.7%) 58 (90.6%) 1

rs11572377 GG 2 (1.7%) 1 (1.4%) 0.88 (0.07 ~ 11.11) 0.920 0.953

GC 10 (8.6%) 2 (2.8%) 1

CC 104 (89.7%) 69 (95.8%) 1

p values were adjusted for age, sex, smoking, diabetes, hypertension, pre-existing cardiovascular events, hemoglobin, albumin, ferritin, and the erythropoietin resistance index.
p and q-values of <0.05 are shown in bold. q-values of <0.05 were considered statistically significant after correction for multiple testing. OR, odds ratio; CI, confidence interval
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Table 5 Association analysis of genetic polymorphisms of the EDN3 gene and cardiovascular disease susceptibility in end-stage
renal disease patients

Cardiovascular disease susceptibility Recessive

rs number Genotype Cases (%) Control (%) OR (95% CI) p value q-value

rs742650 TT 0 (0%) 2 (3.9%) - 0.087 0.197

CT 20 (21.5%) 7 (13.7%) 1

CC 73 (78.5%) 42 (82.4%) 1

rs260741 AA 8 (8.4%) 4 (9.1%) 0.45 (0.08 ~ 2.44) 0.356 0.583

AG 31 (32.6%) 19 (43.2%) 1

GG 56 (58.9%) 21 (47.7%) 1

rs260740 GG 1 (1.0%) 0 (0%) - 0.708 0.796

GT 27 (26.0%) 16 (32.0%) 1

TT 76 (73.1%) 34 (68.0%) 1

rs197174 GG 1 (1.0%) 4 (7.7%) 0.12 (0.01 ~ 1.49) 0.074 0.197

GA 19 (18.4%) 9 (17.3%) 1

AA 83 (39.0%) 39 (75.0%) 1

rs197173 TT 9 (9.0%) 6 (11.1%) 1.67 (0.38 ~ 7.14) 0.497 0.662

GT 33 (33.0%) 18 (33.3%) 1

GG 58 (58.0%) 30 (55.6%) 1

rs6064764 CC 2 (1.9%) 1 (1.6%) 0.03 (0.01 ~ 1.59) 0.083 0.197

CT 24 (22.4%) 4 (6.3%) 1

TT 81 (75.7%) 58 (92.1%) 1

rs926632 CC 2 (1.9%) 3 (5.2%) 2.86 (0.97 ~ 8.33) 0.514 0.662

CT 19 (17.8%) 8 (13.8%) 1

TT 86 (80.4%) 47 (81.0%) 1

rs882345 GG 2 (1.9%) 2 (3.7%) 0.92 (0.05 ~ 16.67) 0.953 0.953

GA 14 (13.5%) 7 (13.0%) 1

AA 88 (84.6%) 45 (83.3%) 1

rs3026575 AA 1 (1.0%) 0 (0%) - 0.515 0.662

AG 7 (6.8%) 4 (7.1%) 1

GG 95 (92.2%) 52 (92.9%) 1

rs11570352 TT 3 (2.5%) 5 (7.0%) 0.20 (0.01 ~ 2.94) 0.216 0.388

TC 4 (3.4%) 1 (1.4%) 1

CC 111 (94.1%) 65 (91.5%) 1

p values were adjusted for age, sex, smoking, diabetes, hypertension, pre-existing cardiovascular events, hemoglobin, albumin, ferritin, and the erythropoietin
resistance index. q-values of <0.05 were considered statistically significant after correction for multiple testing. OR, odds ratio; CI, confidence interval

Table 6 Endothelin (EDN) gene family-related expression quantitative trait loci (eQTLs)

Gene symbol SNP Id GENCODE ID p value Effect size Tissue

EDN1 rs3087459 ENSG00000078401.6 1.5e-5 0.25 Cells - Transformed
fibroblasts

RN7SKP293 rs4714384 ENSG00000223321.1 6.3e-9 −0.37 Artery - Tibial

EDN2 rs11210278 ENSG00000127129.5 3.1e-6 0.55 Heart - Left Ventricle
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and functional validation studies are warranted for
confirmation.
Vargas-Alarcon et al. [26] reported that an EDN1

rs3087459 polymorphism (AA allele) was associated with
an increased risk of developing acute coronary syn-
drome. However, two other studies did not find such an
association of EDN1 rs3087459 with the risk of myocar-
dial infarction or ventricular hypertrophy [27, 28]. In
our study, we also did not find a statistically significant
association of higher risk of CV events with the SNP
rs3087459. Rankinen et al. [29] reported that an EDN1
(Glu106Glu) polymorphism had a risk of HTN in a
Caucasian population. Another study showed that
genetic polymorphisms of the EDN1 rs5370 T allele and
rs2070699 G allele were associated with an increased
risk of ischemic stroke, [30] which is contrary to our
findings. We found that rs3087459 may alter the gene
expression in transformed fibroblasts according to the
results of eQTL database; however, the association of
fibroblasts with CV events remained elusive. Comparing
the above studies to ours, different outcome measure-
ments were noted. The small sample size may also limit
our observations.
Previous studies showed dialysis vintage is a risk factor

for coronary artery calcification, which may reflect the
major risk of CV events [31, 32]. Therefore, the
increased risk of CV events occurred with a longer dur-
ation of dialysis, which may account for the increased
events during our observation period. According to the
USRDS 2012 annual data report, [33] the incidence of
hospitalization for CV morbidity is 4.5–5 times per 100-
patient-months. Our cohort showed a relative fewer
hospitalization of CV events, as compared to US data-
base. We have a better 5-year overall survival in dialysis
patients. Compared to other countries, the CV-related
morbidity and mortality are much lower in Taiwan [34].
It may reflect the different epidemiology of CV events
among populations. In our study, being male, being eld-
erly, having hypoalbuminemia, and having underlying
diabetes mellitus were risk factors for CV events. Being
male and elderly are well known risk factors for CVDs
[35, 36]. Malnutrition-inflammation complex syndrome
is frequently observed in dialysis patients and is associ-
ated with an increased risk of CVD. Protein energy wast-
ing and low albumin levels are poor outcome indicators
[37]. Diabetes patients exhibit increased insulin resist-
ance and an inflammatory status [38]. A previous
study by Chang et al. [39] reported that diabetes and
ESRD synergistically contribute to an increased risk
of CV events.
Lower PTH and Kt/V level were associated with

increased risk of CV events. Some studies showed
hyperparathyroidism was associated with increased risk
of CV mortality and all-cause mortality in dialysis

patients [40–42]. However, a meta-analysis showed no
significant association between PTH level and non-fatal
cardiovascular events or CV mortality [43]. The PTH
level is pulsatile in character and highly sensitive to
change in ionized calcium and calcitriol levels [44].
There may be selection bias in our small sample size
cohort. Therefore the association between low PTH and
risk of CV events may need further investigation. In
renal failure patients, there are a lot of uremic toxins
leading to inflammation and subsequently CV events.
Better Kt/V is associated with less uremic toxins reten-
tion, which may be related to lower risk of CV events.
Đurić PS et al. [45] reported longer dialysis duration was
associated with lower CV comorbidities. The FHN
(Frequent Hemodialysis Network) trial group [46] also
found better composite outcomes of death or change in
left ventricular mass in frequent hemodialysis group as
compared to conventional hemodialysis. In this view, the
patients who received better dialysis clearance may have
lower risk of CV events.
As we know, there were several identified risk factors

contributing to cardiovascular comorbidities in renal failure
patients. However, the prevalence and severity of CV events
in ESRD patients is disproportionate to the identified risk
profiles [47]. In the current study, we found potential gen-
etic risk alleles and this may further improve the prediction
model for CV comorbidities in these patients.
Several limitations of this study should be noted.

First, the sample size was not large, and thus the stat-
istical power may be limited. Second, we did not
check the plasma ET-1 level to prove associations of
genetic variants with its expression, as it was reported
to be associated with several phenotypes in previous
studies [13]. Third, we did not find the association
between the SNPs of EDN and pre-existing CV
events. It may be due to different composition of pre-
existing CV events and different dialysis stage of
these patients.

Conclusions
We found three genetic variants of the EDN1 gene to be as-
sociated with increased risk of hospitalization for a CV
event, and rs4714384 was responsible as an eQTL in the
peripheral artery. It may influence the EDN1 gene
expression and alter vascular homeostasis in the peripheral
artery. A further validation study is required to confirm the
roles of these polymorphisms in the risk of CV events.
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