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Abstract

Background: We studied whether endothelin receptor antagonist and calcimimetic treatments influence renal
damage and kidney renin-angiotensin (RA) components in adenine-induced chronic renal insufficiency (CRI).

Methods: Male Wistar rats (n = 80) were divided into 5 groups for 12 weeks: control (n = 12), 0.3%
adenine (Ade; n = 20), Ade + 50 mg/kg/day sitaxentan (n = 16), Ade + 20 mg/kg/day cinacalcet (n = 16), and
Ade + sitaxentan + cinacalcet (n = 16). Blood pressure (BP) was measured using tail-cuff, kidney histology was

examined, and RA components measured using RT-gPCR.

Results: Adenine caused tubulointerstitial damage with severe CRI, anemia, hyperphosphatemia, 1.8-fold

increase in urinary calcium excretion, and 3.5-fold and 18-fold increases in plasma creatinine and PTH, respectively.
Sitaxentan alleviated tubular atrophy, while sitaxentan + cinacalcet combination reduced interstitial inflammation,
tubular dilatation and atrophy in adenine-rats. Adenine diet did not influence kidney angiotensin converting
enzyme (ACE) and AT, receptor mRNA, but reduced mRNA of renin, AT, AT,, (pro)renin receptor and Mas to
40-60%, and suppressed ACE2 to 6% of that in controls. Sitaxentan reduced BP by 8 mmHg, creatinine, urea,
and phosphate concentrations by 16-24%, and PTH by 42%. Cinacalcet did not influence BP or creatinine, but
reduced PTH by 84%, and increased hemoglobin by 28% in adenine-rats. The treatments further reduced renin mRNA
by 40%, while combined treatment normalized plasma PTH, urinary calcium, and increased ACE2 mRNA 2.5-fold versus

the Ade group (p < 0.001).

Conclusions: In adenine-induced interstitial nephritis, sitaxentan improved renal function and tubular atrophy.
Sitaxentan and cinacalcet reduced kidney renin mRNA by 40%, while their combination alleviated tubulointerstitial
damage and urinary calcium loss, and increased kidney tissue ACE2 mRNA.

Keywords: Chronic kidney disease, Sitaxentan, Cinacalcet, Creatinine, Parathyroid hormone, Renal renin-angiotensin
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Background

Chronic kidney disease (CKD) and its progression to end
stage renal disease (ESRD) remain a global clinical chal-
lenge [1, 2]. Regardless of the original kidney insult, one of
the major causes leading to the decline of renal function is
interstitial fibrosis [3, 4]. Adenine diet administration to
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rats, and the subsequent deposition of 2,8-dihydroxyade-
nine crystals in kidney tissue, induce an inflammatory re-
sponse resembling the pathology of interstitial nephritis
and the consequent fibrosis [5-7]. The adenine model has
been shown to result in severe chronic renal insufficiency
(CRI) with its typical uremic findings such as elevated cre-
atinine and urea, anemia, and secondary hyperparathyr-
oidism (SHPT) [5, 8-11].

Activation of the renin-angiotensin system (RAS) is,
by far, the best-characterized promoter of inflammation
and fibrosis in the pathology of CRI [12, 13]. The formation
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of local angiotensin II is known to promote inflammation
and fibrosis [12, 13], while inhibition of RAS attenuates
proteinuria, glomerulosclerosis and also the development
of interstitial fibrosis [14]. However, the need for additional
renoprotective therapeutics is evident, and thus the
endothelin system has recently garnered high interest.

The endothelin system is activated in virtually all causes
of CKD, in which endothelin receptor A (ETA) activation
promotes vasoconstriction, renal cell injury, inflammation,
and fibrosis. The endothelin system is also linked to RAS
by positive feedback loops [15-17]. While ETA antagonists
have been shown to ameliorate renal injury, fibrosis, pro-
teinuria, and disease progression in experimental diabetic,
hypertensive, and remnant kidney rat models of CKD [16],
less is known about the effects of ETA antagonism in renal
diseases of tubulointerstitial origin. Some studies suggest that
ETA antagonism might deteriorate renal function in polycys-
tic models of CKD [18].

Disturbed calcium-phosphate metabolism and SHPT
may also contribute to the progression of CKD [19]. We
previously found that dietary phosphate loading, and
phosphate binding by oral calcium carbonate treatment,
altered the contents of RAS components in the kidney
and aorta, and also influenced glomerulosclerosis and
tubulointerstitial damage in 5/6 nephrectomized rats
[20-22]. However, the key player modulating RAS com-
ponents through changes in calcium-phosphate metabol-
ism has remained elusive. Recently, reducing serum
parathyroid hormone (PTH) with cinacalcet, a positive
allosteric modulator of the calcium sensing receptor
(CaSR), in adenine-induced rat model of CKD was reported
to attenuate renal fibrogenesis and reduce plasma creatin-
ine concentration [10]. It is plausible that some of the ef-
fects of oral calcium carbonate supplementation and the
positive allosteric modulation of CaSR, i.e. calcimimetics,
might be mediated via local CaSR activation.

Recently, major interest has been directed towards
the possible benefits of endothelin type A receptor
blockade in kidney diseases with glomerular damage
and proteinuria [16]. Here we evaluated the effects of
treatment with the selective ETA antagonist sitaxen-
tan and the positive allosteric CaSR agonist cinacalcet,
alone and in combination, on the progression of ad-
enine rat model of severe interstitial nephritis. As
both endothelin system and calcium-phosphate
metabolism can affect intrarenal RAS, we hypothe-
sized that the putative positive outcomes of sitaxentan
and cinacalcet might be reflected as changes in the
kidney components of RAS, transforming growth
factor-31 (TGF-31) and connective tissue growth fac-
tor (CTGF), key markers and potential therapeutic
targets of kidney fibrosis [23]. To our knowledge, the
local kidney tissue RAS components have not been
previously studied in this model of CKD.
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Methods

Animals and experimental design

Eighty male Wistar rats (Harlan Laboratories, Horst, The
Netherlands) aged 8 weeks were housed four to a cage with
free access to water and chow. At the age of 10 weeks the
rats were divided into 5 groups with matched systolic blood
pressures (BP) and body weights. The systolic BP was mea-
sured at +28°C by the tail-cuff method (Model 129 Blood
Pressure Meter; IITC Inc., Woodland Hills, CA).

One group was given the control diet (RM3, Scanbur,
Karlslunde, Denmark) and 4 groups received 0.3% aden-
ine (Sigma-Aldrich, Saint Louis, MO) added to the
chow. We chose the continuous 0.3% adenine diet for
this 12-week study [11], based on (1) previous findings
of high mortality related to the 0.75% adenine diet, even
if adenine was withdrawn after 4 weeks of administra-
tion [24]; and (2) concerns about the reversibility of CRI
when adenine administration is discontinued [9, 24].

In addition to adenine, rats in 3 groups received either
sitaxentan (50 mg/kg/d added to the drinking water pro-
tected from light; Pfizer, New York, NY), cinacalcet
(20 mg/kg/d added to the 0.3% adenine chow; Amgen
Thousand Oaks, CA), or both of these treatments for
12 weeks. The doses of these compounds were chosen
on the basis of previous reports [10, 25-29]. The study
groups were: control (Control, n = 12), adenine (Ade,
n = 20), adenine + sitaxentan (Ade + S, # = 16), aden-
ine + cinacalcet (Ade + C, n = 16), and adenine + com-
bination treatment (Ade + SC, n = 16). The medications
were continued until the end of the study.

Body weights were monitored weekly, systolic BP was
measured at the end of the study, and 24-h water con-
sumption, urine output, and chow consumption were
monitored twice during the treatments (weeks 5 and 10)
in metabolic cages. Urine samples were stored at —-70°C
for analyses. At close of the study, rats were anesthetized
with intraperitoneal urethane (1.3 g/kg), the carotid artery
was cannulated, and blood samples were drawn with
EDTA and heparin as anticoagulants, as appropriate.
Plasma and weighed tissue samples were stored at —70 °C.

The experimental design was approved by the Animal
Experimentation Committee of the University of
Tampere, and the Provincial Government of Western
Finland, Department of Social Affairs and Health,
Finland; identification number ESLH-2008-03943/Ym-
23. The investigation conforms to the Guiding Principles
for Research Involving Animals.

Sample size calculation

As the major aim of the study was to evaluate if the treat-
ments can ameliorate adenine-induced CRI, creatinine was
chosen as the primary outcome variable. The relevant
difference in the means of creatinine values of treated and
untreated adenine rats as well as the standard deviation of
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creatinine values were both estimated at 40 pmol/l. The
estimation of standard deviation was derived from previ-
ously published adenine rat experiments [5]. Power of the
study was set at 0.80 and the type I error probability at
0.05. The sample size of untreated adenine rats was
adjusted for expected attrition of 20% and, thus, the sample
size was multiplied by 1.25 in the Ade group. The acquired
sample sizes were 15 and 19 for treated and untreated ad-
enine rats, respectively, and were ultimately rounded up to
the nearest even number (rats were housed four to a cage).
The sample size was calculated using PS program [30].

Hormonal and chemical analyses

Sodium, potassium, creatinine, urea, phosphate, calcium,
cholesterols and proteins were measured using standard
clinical chemical methods (Cobas Integra 800 Clinical
Chemical Analyzer, Roche Diagnostics, Basel, Switzerland).
The determination of 24-h creatinine clearance was based
on urine determinations from week 10 and plasma
samples taken at close of the study. The enzymatic
method used here for creatinine determination has
been previously shown to be reliable in both healthy
and diseased rats [31]. Hemoglobin was determined
photometrically (Technicon H*2™, Technicon Instru-
ments Corporation, Tarrytown, NY) and rat intact
parathyroid hormone (PTH) levels by immunoradio-
metric assay (Immutopics Inc. San Clemente, CA).

Renal histology

Morphological investigations from haematoxylin-eosin
stained kidney sections were performed with light mi-
croscopy in a blinded manner. Glomerular and tubuloin-
terstital scores were determined according to Schwarz et
al. [32], originally described by El Nahas et al. [33] and
Veniant et al. [34], respectively.

Semi-quantitative glomerular score for each group was
assessed by examining 100 glomeruli at magnifications
x100 and x400: grade O, normal glomeruli; grade 1,
mesangial expansion; grade 2, mild/moderate segmental
hyalinosis/sclerosis involving <50% of the glomerular tuft;
grade 3, diffuse glomerular hyalinosis/sclerosis involving
>50% of the tuft; grade 4, diffuse glomerulosclerosis with
total tuft obliteration and collapse. The index in each
group was expressed as the mean of all scores obtained.

The tubulointerstitial scores (tubular atrophy, tubular
dilatation, interstitial expansion, interstitial inflammation
and interstitial fibrosis) were determined by visualizing
randomly selected ten fields per kidney at a magnifica-
tion x100. The grading was as follows: grade 0, no
changes; grade 1, lesions involving <25% of the area;
grade 2, lesions involving 25-50%; grade 3, lesions af-
fecting >50% of the area; and grade 4, lesions involving
(almost) the entire area. The means of all scores given
comprised the tubulointerstitial indexes.
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Real-time quantitative RT-PCR

Total RNA was isolated from kidney tissue using Trizol
reagent (Invitrogen, Carlsbad, CA). Reverse transcription
of RNA was performed using M-MLV reverse transcript-
ase (Invitrogen) according to the manufacturer’s instruc-
tions. Beta-actin was used as a housekeeping gene. PCRs
were performed with SYBR Green or TagMan chemistry
using ABI PRISM 7000 sequence detection (Applied
Biosystems, Foster City, CA).

PCRs for angiotensin converting enzyme (ACE),
angiotensin II receptor type 1, (ATi,r), angiotensin
IV receptor (AT,gr), (pro)renin receptor (PRR), and
TGF-31 were performed in duplicate in 25 pl final
volume containing 1X SYBR Green Master mix (Applied
Biosystems) and 300 nM of primers. PCRs for ACE2,
angiotensin II receptor type 2 (AT,g), renin, and CTGF
were performed in duplicate in 25 pl final volume contain-
ing 1X TagMan Master mix (Applied Biosystems),
300 nM of primers (for renin 900 nM) and 100 nM of
ACE2, 150 nM of ATy, 250 nM of renin, or 200 nM of
CTGF TagMan probe, respectively.

PCR cycling conditions for mRNAs were 10 min at
+95 °C and 40 cycles of 20 s at +95 °C and 1 min at
+60 °C. Data were analyzed using the absolute standard
curve method [35]. Beta-actin (TagMan assay code
Rn00667869_m1) was analyzed in a similar fashion to
18S analysis in our earlier paper [20]. The expressions of
beta-actin did not differ between the groups, and the
other results were normalized for the levels of beta-actin.

Western blotting of TGF-R31

Kidney tissues were homogenized in a lysis buffer contain-
ing 100 mmol/L NaCl, 10 mmol/L KCI, 8 mmol/L
Na,HPO,, 3 mmol/L MgCl,, 0.5% NP40, 10 mmol/L Tris-
HCI, pH 7.4 and protease inhibitors (CompleteTM Mini,
Protease Inhibitor Cocktail Tablets, Roche Diagnostics
GmbH, Mannheim, Germany). Homogenates were incu-
bated on ice for 30 min and centrifuged at 15000 g for
15 min. Protein concentration in the supernatant was
determined using the BCA protein assay kit (Pierce,
Rockford, IL, USA). Equal amounts of protein (25 pg)
were fractionated by 4-20% Mini-PROTEAN TGX Stain-
Free Gel (Bio-Rad, Hercules, CA, USA). The gel was
stain-free activated and blotted onto a low-fluorescence
polyvinylidene fluoride membrane (LF PVDF Trans-Blot
Turbo RTA Transfer Kit) with Trans-Blot Turbo Transfer
System (Bio-Rad). The membrane was then stain-free
imaged for total protein normalization using ChemiDoc
Touch Imaging System (Bio-Rad) and probed with mouse
anti-TGF-81 (R&D Systems, Minneapolis, MN, USA).
Enhanced chemiluminescent detection was performed
using the SuperSignal West Pico Chemiluminescent
Substrate (Thermo Scientific, Rockford, IL, USA) and
the chemiluminescent application on the ChemiDoc
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Touch Imaging System. Quantification of signal inten-
sities was performed using the ImageLab software
(Bio-Rad) by normalizing the intensities of specific
bands to the total protein content on the membrane.
Representative original Western blot image of TGF-31
is shown in Additional file 1: Figure S1.

Data presentation and analysis of results

Statistical analysis was carried out using one-way ana-
lysis of variance (ANOVA), and post-hoc comparisons
were performed with the Tukey HSD test if the variables
had equal variances verified by the Levene’s test. If this
criterion was not met, the Kruskal-Wallis test and the
Mann-Whitney test with the Bonferroni correction were
used. The results in the table were presented as
mean + SEM, while the figures show mean + 95% confi-
dence interval of the mean. Differences were considered
significant when P < 0.05. SPSS 17.0 software (SPSS Inc.,
Chicago, IL, USA) was used for the statistics.

Results

Animal data

The adenine diet resulted in decreased body weights and
lower chow intake, but no rats were lost during the study
(Table 1). Chow intake in the Ade + S group was reduced
slightly less than in the Ade group. The adenine diet did not
elevate systolic BP, whereas both sitaxentan-treated groups

Table 1 Animal data and laboratory findings in the study groups
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showed reduced BP when compared with the Ade group.
The volumes of drinking fluid and urine were increased in
all adenine groups, while the Ade + SC group showed lowest
urine volume among the adenine-treated groups.

Laboratory findings

All adenine-diet groups showed markedly elevated plasma
creatinine and urea concentrations (Fig. 1a-b). In the Ade
group plasma creatinine and urea were 3.5 and 4.5-fold
higher, respectively, than in the Control group. Sitaxentan
treatment alone and in combination with cinacalcet ame-
liorated the increase in creatinine and urea when com-
pared with the Ade group. Creatinine clearance in the
Ade group was reduced to about 22%, and in the
sitaxentan-treated groups to about 32%, of that in the
Control group (Table 1). Cinacalcet treatment alone did
not influence plasma creatinine or urea concentrations
versus the Ade group (Fig. 1a and b).

Hemoglobin was markedly reduced in the Ade group
when compared with the Control group (Fig. 1c). Sitaxentan
treatment did not affect hemoglobin, while cinacalcet treat-
ment alone and in combination with sitaxentan elevated
hemoglobin by 28% when compared with the Ade group.
There were no differences in 24-h urine protein excretion
among the study groups (Fig. 1d).

Plasma sodium and potassium concentrations were in-
creased in all adenine groups, while plasma sodium level

Control Ade Ade + S Ade + C Ade + SC

Number of animals 12 20 16 16 16
Body weight (g)

week 0 406 + 8 409 £ 5 409+ 5 409 £ 5 409 £ 5

week 12 450 £ 11 339 + 6% 341 + 6% 340 £ 7% 359 + 8*
Chow intake at week 10 (/24 h) 203 £10 139 £ 0.3* 16.5 + 0.5*t 151 +£07* 148 £ 0.8*
Systolic blood pressure (mmHg)

week 0 139+ 1 138 £ 1 139+ 1 138 + 1 139+ 1

week 9 137 +£2 138 + 1 130 £ 21 138 + 14 129 + 2%t
Drinking volume (ml/24 h) 31.0£19 875+ 29*% 88.1 + 1.8* 83.5 + 3.5*% 81.2 +24*
Urine volume (ml/24 h) 200 £ 23 739 £ 2.2% 82.7 + 2.7%% 69.1 + 3.8 54.7 + 2.5%t
24-h creatinine clearance (ul/min/kg)? 379+ 23 82 + 6* 119 + 8%t 9 + 11* 122 £ 13%F
Final plasma

Sodium (mmol/l) 1351 0.7 1383 + 0.5% 141.5 + 0.6*t 140.1 £ 0.5% 140.7 £ 0.5%t

Potassium (mmol/l) 363 + 0.09 4.34 £ 0.07* 4.22 £ 0.08* 419 £0.12% 405 + 007*

Cholesterol (mmol/l) 145+ 0.05 232 +0.10* 1.78 £ 0.09t 199 + 0.10%F 161 £0051

HDL (mmol/l) 0.60 £ 0.02 091 + 0.04* 0.70 + 0.021 0.82 + 0.04* 069 + 0.02*+

Trigly (mmol/I) 1.06 £ 0.14 1.14 £ 0.10 0.86 +0.10 0.98 £ 0.08% 0.68 £ 0.04t

Non-HDL (mmol/l) 0.86 + 0.04 141 £ 0.07* 1.08 + 0.08F 1.17 £ 0.07*% 092 £ 0.04t

Proteins (g/l) 534 +£10 519+ 08 528 £1.2 511 £15 519 £ 09

Mean + SEM; Ade, 0.3% adenine diet; S, sitaxentan 50 mg/kg/day; C, cinacalcet 20 mg/kg/day; ®estimated from urine collection during week 10 and final plasma

creatinine; *p < 0.05 vs. Control; tp < 0.05 vs. Ade; +p < 0.05 vs. Ade + SC
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was slightly further elevated by sitaxentan (Table 1).
Plasma total, HDL, and non-HDL cholesterol concentra-
tions were increased in the Ade group, and were not sig-
nificantly influenced by cinacalcet treatment. However,
plasma total and non-HDL cholesterol concentrations
did not differ from the Control group in the sitaxentan-
treated groups. Plasma protein concentrations did not
differ between any of the study groups (Table 1).

Plasma total calcium concentration was not affected
by the adenine diet (Fig. 2a), but was slightly higher in
the Ade + S than in the Ade + SC group. Plasma phos-
phate was significantly increased in all adenine-fed rats
(Fig. 2b), while the Ade + S rats showed lower phosphate
levels than the Ade + SC rats. Plasma PTH was in-
creased 18-fold in the Ade group when compared with
the Control group (Fig. 2c). Sitaxentan treatment alone
reduced plasma PTH concentration by 42% when com-
pared with the Ade group, while plasma PTH in the two
cinacalcet-treated groups did not significantly differ from
that in the Control group. The 24-h urinary calcium ex-
cretion was increased about 2-fold in all other adenine
groups versus the Control group, with the exception of
the combined sitaxentan + cinacalcet group, in which

urinary calcium excretion did not differ from that in the
Control group (Fig. 2d).

Renal histology

The deposits of 2,8-dihydroxyadenine crystals were accom-
panied by clear tubulointerstitial damage in all adenine-fed
rats (Figs. 3 and 4). In contrast, the glomeruli of the adenine
groups showed only minor alterations, so that the glomeru-
losclerosis index was slightly higher in all adenine groups
combined than in the Control group (Fig. 3a).

The adenine diet increased interstitial infiltration of
inflammatory cells when compared with the Control
group (Figs. 3b and 4). The combination of sitaxentan
and cinacalcet alleviated interstitial inflammation when
compared with untreated Ade rats, while the influence
of cinacalcet monotherapy was not significant (p = 0.054
for Ade + C vs. Ade). Interstitial fibrosis was moderately
increased in all adenine-fed rats, and was not affected by
the treatments (Figs. 3c and 4). The adenine diet in-
duced expansion of the interstitial tissue (reflecting in-
flammation, fibrosis and edema), while cinacalcet alone
and in combination with sitaxentan alleviated interstitial
tissue expansion (Figs. 3d and 4).
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All adenine groups showed increased scores of tubular
dilatation and atrophy when compared with the Control
group, while the combination of cinacalcet and sitaxentan
alleviated both tubular dilatation and atrophy. Sitaxentan
treatment alone also alleviated tubular atrophy, while the
effect of cinacalcet monotherapy was not significant
(p = 0.095) (Figs. 3e-f and 4)

Renal RAS, CTGF and TGF-81 mRNAs, and TGF-B1 protein
Renal renin mRNA levels were strongly reduced by the
adenine diet, while the treatments resulted in further
40-45% reduction in renin mRNA when compared with
the Ade group (Fig. 5a). PRR mRNA contents were re-
duced in all adenine-fed groups by about 40-50%, but
no additional effect was observed with the treatments
(Fig. 5b). Renal ACE mRNA content was not affected by
adenine administration, but was moderately reduced in
the Ade + S group versus the Control group (Fig. 5¢). In
contrast, kidney ACE2 mRNA content was strikingly
suppressed (by 85-94%) in all adenine groups when
compared with the Control group (Fig. 5d). The sup-
pression of ACE2 mRNA, however, was less marked in
the group treated with sitaxentan + cinacalcet when
compared with the other adenine groups, and ACE2

content in the Ade + SC group was 2.5-fold higher than
in the Ade group (p < 0.001).

Renal AT, mRNA content was decreased by about
50% in all adenine-diet groups when compared with
the Control group (Fig. 6a). Kidney AT,rx mRNA was
also reduced by about 50% in the adenine groups
(Fig. 6b), although significant difference was not
reached between any single group versus the Control
group. AT,z mRNA remained unchanged by adenine
feeding (Fig. 6¢). Mas receptor mRNA in the adenine
groups was about 40% lower than that in the Control
group (Fig. 6d), while again no significant difference
was observed between any single group versus the
Control group. Neither sitaxentan nor cinacalcet
treatment influenced renal tissue ATz, ATor, AT4g,
or Mas mRNA contents (Fig. 6a-d).

CTGF mRNA content was increased in the Ade
group, while all treatments restored CTGF mRNA to
the level of the Control rats (Fig. 7a). TGF-31 mRNA
content was increased in the Ade and Ade + S
groups, and slightly further elevated in the two
cinacalcet-treated Ade-groups (Fig. 7b). When deter-
mined using Western blotting, TGF-81 protein was
clearly increased by the adenine-diet, and was not affected
by sitaxentan or cinacalcet treatments. The difference in
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kidney tissue TGF-31 protein content was not significant
between the Control and Ade + SC groups due to the
large variability in the TGF-31 signal in the latter group
(Fig. 7¢).

Discussion

This study investigated the effects of sitaxentan and cina-
calcet, alone and in combination, on the progression of
CRI and kidney RAS components in the adenine rat
model of CRI. The 0.3% adenine diet for 12 weeks induced
severe CRI corresponding to stage 4 CKD, with typical
uremic findings including anemia, hyperphosphatemia,
SHPT, and elevated plasma potassium concentration [36].

The rats receiving adenine also showed weight loss, in-
creased water consumption and polyuria, in concert with
previous findings in this model [5, 10, 11]. However, sys-
tolic BP and urinary protein excretion were not increased.
We applied the tail-cuff method to measure systolic BP,
and with this approach we have previously found elevated
BP in the 5/6 nephrectomy model of CRI [20-22]. By
means of radiotelemetry, a more accurate method to
measure BP, a moderate 18 mmHg elevation of mean ar-
terial pressure was reported in adenine-fed rats [37]. How-
ever, the level of CRI in those rats corresponded to stage 5
CKD with 90% reduction in creatinine clearance [36],
whereas in the present study the reduction was



Térménen et al. BVIC Nephrology (2017) 18:323

Page 8 of 13

6 = interstitial inflammation

Fig. 4 Representative photomicrographs of haematoxylin-eosin stained kidney histology in the study groups; Control (a), Ade (b), Ade + S (c),
Ade + C (d), Ade + SC (e); 1 = glomeruli, 2 = healthy tissue (tubules); 3 = adenine crystal formations; 4 = dilated tubule; 5 = tubular atrophy;

J

approximately 80%. Increased proteinuria has previously
been reported in rats fed 0.75% adenine diet for 4 weeks,
followed by the withdrawal of adenine for 8 weeks, how-
ever, in that study the rats also had severe stage 5 CKD
with a 10-fold increase in plasma creatinine [10]. Thus,
the above discrepancies can be partially explained by

variations in the level of renal insufficiency due to the
different  protocols of adenine administration.
Altogether, the absence of proteinuria and the present
morphological findings showing tubulointerstitial tissue
damage following adenine administration indicate that
this model is associated with low level of glomerular
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damage. This notion is supported by similar histopatho-
logical findings in previous rat and mice adenine models
of CKD [5, 38]. Of note, in the present study plasma pro-
tein concentrations were similar in all rat groups, and this
argues against the view that the adenine-diet would have
caused marked extracellular fluid accumulation.

The present study showed that selective ETA antagonism
with sitaxentan at 50 mg/kg/day moderately improved renal
function in this non-proteinuric model of advanced intersti-
tial nephritis. The facts that a similar improvement in cre-
atinine clearance was observed in both sitaxentan-treated
groups, and that no rats were lost during the study,
strengthen this finding. Sitaxentan also reduced tubular at-
rophy, while the combination of sitaxentan + cinacalcet re-
duced interstitial inflammation, interstitial expansion,
tubular dilatation and tubular atrophy in the adenine-
treated rats. The inhibition of the direct effects of the ETA
receptor is the obvious mechanism for the reduced pro-
gression of CRI and improved morphology in the
sitaxentan-treated rats, as ETA activation is known to pro-
mote renal cell injury, inflammation and fibrosis [16, 17].
Previously treatment with endothelin receptor antagonists
has ameliorated renal injury, fibrosis, proteinuria, and dis-
ease progression in experimental diabetic, hypertensive,
and remnant kidney rat models of CKD [16]. Our results

indicate that selective ETA antagonism is also beneficial in
this interstitial model of chronic nephritis.

Although the present model of CRI was not hyperten-
sive, sitaxentan administration reduced BP. As BP was
reduced to levels lower than in normal controls in spite
of the prevailing CRI, this effect was rather attributed to
the direct effects of ETA antagonism than to the benefi-
cial influences on renal function. Due to the vasodilating
effects, sitaxentan influences kidney hemodynamics
[15-17], and the beneficial effects on renal function
may have partially been mediated via increased renal blood
flow. The possibility remains that sitaxentan interfered with
the adenine-induced renal injury via its effects on kidney
blood flow and tubular function, as such mechanisms may
have subsequently influenced the formation of adenine
crystals in the tubular fluid. Sitaxentan treatment also
reduced plasma phosphate, PTH, total cholesterol, and
non-HDL cholesterol concentrations. The disturbances of
calcium-phosphate metabolism are associated with the level
of impairment in kidney function [36]. In addition, CRI is
characterized by abnormalities in the composition and me-
tabolism of plasma lipoproteins [39, 40], and a significant
reduction of lipoprotein catabolism is observed in ad-
vanced renal insufficiency [40]. Therefore, the beneficial
effects of sitaxentan on phosphate, PTH and lipid
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metabolism were probably due to the beneficial influ-
ence on renal function.

As expected, cinacalcet treatment at 20 mg/kg/day ef-
fectively reduced PTH, while the treatment was without
influence on renal function in the adenine model of CRIL
Disturbed calcium-phosphate metabolism and SHPT
have been previously linked with fibrosis and the pro-
gression of CKD [19]. Recently, moderate reduction of
PTH (from 441 to 327 pg/ml) with cinacalcet (10 mg/
kg/day) for 12 weeks in the adenine-model of CKD was
reported to attenuate the endothelial-to-mesenchymal
transition in rat kidneys [10], one of the mechanisms for
myofibroblast accumulation in renal fibrogenesis [3, 41].
Cinacalcet was also found to improve kidney histology
and reduce creatinine concentration following a protocol
where 0.75% adenine diet was given for 4 weeks and
then withdrawn for 8 weeks [10]. The untreated
adenine-rats still had 10-fold elevation of plasma cre-
atinine at close of the study [10]. Based on these find-
ings, treatment with cinacalcet may help to improve
recovery from the adenine-induced kidney insult. In the
present study we applied constant 0.3% adenine diet,
and in this model cinacalcet was without statistically sig-
nificant influences on renal function, interstitial inflam-
mation, fibrosis, tubular dilatation, and tubular atrophy.

The present cinacalcet treatment, alone and in com-
bination with sitaxentan, elevated blood hemoglobin
concentration by 28%. As there was no significant effect
on renal function, the increase in hemoglobin in
cinacalcet-treated rats was most probably mediated via
the effective PTH suppression. SHPT is known to cause
osteitis fibrosa cystica, characterized by decreased blood
cell formation in the fibrotic bone marrow [42]. There-
fore, the lowering of plasma PTH may well explain the
partial correction of anemia in rats receiving cinacalcet.

Urinary calcium excretion was increased in all other
groups receiving adenine, but not in rats receiving both
sitaxentan and cinacalcet. Previously, CRI induced by
adenine diet has been found to reduce intestinal Ca**
absorption, increase bone resorption, increase Ca>* in-
corporation into soft tissues, and enhance urinary Ca**
excretion [5, 43]. The finding that combined treatment
with sitaxentan and cinacalcet normalized urinary
calcium excretion cannot solely be explained by the im-
proved renal function and reduced calcium efflux from
bone via correction of SHPT, as neither of these treat-
ments alone influenced urinary calcium loss. A potential
explanation is an effect on bone turnover that is influ-
enced via CaSR and ETA-mediated pathways [44, 45].

Renin is the central rate-limiting enzyme of the RAS [46],
and therefore effects on renin expression can shift the
balance of the whole system towards vasoconstriction or
vasodilatation. In this study, the adenine diet resulted sup-
pressed kidney renin mRNA levels to 45% of the mRNA
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content in control rats. This was probably caused by the
loss of functional kidney tissue. Interestingly, all of the
treatments induced a further 40-45% suppression of renin
mRNA content, indicating a down-regulation of vasocon-
strictive kidney RAS activity. The molecular mechanism of
reduced renin mRNA remains unknown, but one putative
explanation could be inhibition of human antigen R tran-
scription, an enhancer of renin mRNA stability via
interleukin-10 release [47].

Kidney ACE was not significantly affected by the aden-
ine diet, contrary to the surgical remnant kidney model
of advanced CKD, in which we have previously found
renal ACE to be increased [20, 22]. We have also found
that in rat kidney tissue, ACE mRNA content correlates
very well with the amount of ACE protein (r~0.8) [20].
In addition, oral calcium supplementation has been
found to down-regulate renal ACE mRNA and protein
content, but the exact mechanism beyond this reduction
has not been discovered [20, 22]. On the basis of the
present results with cinacalcet, neither allosteric modu-
lation of the CaSR, nor suppression of PTH, has an
influence on ACE mRNA content in renal tissue. Sitax-
entan treatment alone slightly reduced renal ACE
mRNA content when compared with the Control group,
but not when compared with untreated adenine-rats
(Ade group). Combined sitaxentan + cinacalcet treat-
ment was without influence on kidney ACE mRNA con-
tent, and renal ACE mRNA content did not differ
between the groups receiving the adenine diet. Thus,
sitaxentan did not have a significant influence on renal
ACE mRNA content.

The adenine diet had diverse effects on mRNA levels of
RAS components in the kidney, but the most dramatic
finding was 94% suppression of renal ACE2 mRNA con-
tent when compared with the Control group. ACE2 is
considered a protective RAS component, and it degrades
angiotensin II and generates angiotensin 1-7 that has
vasodilatory, natriuretic and antifibrotic properties [46].
Reduced ACE2 in kidney tissue would shift the balance to-
wards vasoconstrictive and profibrotic RAS activity [46].
Previously, moderate 40% reduction in kidney tissue
ACE2 content was reported in the 5/6 nephrectomy rat
model of CKD [20]. The present marked suppression of
ACE?2 following adenine administration raises the possibil-
ity that this mechanism is involved in the pathogenesis of
kidney damage in this model. Of note, combined ETA
blockade with sitaxentan and PTH reduction with cinacal-
cet moderately but significantly alleviated the suppression
of ACE2 in kidney tissue, but neither of these compounds
had any significant influences on the mRNA levels of RAS
receptors in this study. Thus, parallel ETA receptor
stimulation and high PTH level seem to contribute to
the harmful RAS activation particularly via suppres-
sion of ACE2 in this model.
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The adenine diet did not influence kidney AT,z
mRNA contents, but reduced those of ATz, ATog,
Mas, and PRR by 40-60%. AT,z mediates the poten-
tially harmful effects of angiotensin II, so reduced con-
tent of this receptor in the kidney could be considered
beneficial. The effects of AT,y stimulation seem to me-
diate vasodilatory and antiproliferative effects [46]. Thus,
down-regulation of AT,z might participate in the renal
pathophysiology of the adenine model. Down-regulation
of the renal AT,y has been previously reported in the 5/
6 nephrectomized rat model of CRI [20]. Should the re-
ductions in Mas and PRR mRNA reflect changes at the
protein level, these changes may also have contributed
to the pathology in the adenine model, as Mas receptor
mediates the effects of the antifibrotic angiotensin 1-7
[46, 48], while PRR is thought to be essential for normal
podocyte function [49].

The fact that renal fibrosis was not reduced by the
present treatments corresponds to the finding that nei-
ther sitaxentan nor cinacalcet showed major influences
on RAS components or TGF-81 levels, two intercon-
nected promoters of interstitial fibrosis [50]. Although
there was some variation between the PCR and western
blotting results of TGF-81, both methods showed in-
creased TGF-81 in the adenine model that was not de-
creased by sitaxentan or cinacalcet. TGF-f31 induces
fibrosis by stimulating epithelial-to-mesenchymal transi-
tion, proliferation of fibroblasts, synthesis of extracellular
matrix components, and by reducing collagenase pro-
duction [51]. It has also indirect effects through other
profibrotic factors, of which CTGF influences both cel-
lular proliferation and extracellular matrix accumulation
[23, 51, 52]. In addition, CTGF enhances TGF-f31 signal-
ing by 1) binding to the growth factor and supporting its
interaction with the TGF-81 receptor, 2) affecting other
down-stream proteins in TGF-31 signaling, and 3) inhi-
biting the counteracting bone morphogenetic protein 7
(BMP-7) pathway [23, 53]. CTGF expression is stimu-
lated by several other factors besides TGF-31, and it can
also exert TGF-31 independent actions [54].

CTGF mRNA was increased in the adenine model,
whereas both sitaxentan and cinacalcet treatments pre-
vented this change. The plausible underlying mecha-
nisms are multiple, including direct antifibrotic effects of
the therapies, decreased cholesterol levels, and control
of SHPT. The findings on CTGF may be of importance,
as it is one of the potential treatment targets in kidney
fibrosis [23, 54]. Reduced CTGF is a plausible mechan-
ism for the beneficial morphological findings, as sitaxen-
tan and cinacalcet in combination improved interstitial
inflammation, tubular dilatation and tubular atrophy in
this model of CRI. However, hemizygous deletion of
CTGF did not prevent fibrosis in an advanced nephropa-
thy model in mice. Thus, the significance of CTGF may
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be overruled by other factors in the fibrotic response dur-
ing chronic kidney damage, when even normal amounts
of CTGF may promote fibrosis [55]. Interestingly, CTGF
is a possible independent predictor of end-stage renal
disease and mortality in patients with type 1 diabetic
nephropathy [54].

Conclusions

In the adenine rat model of chronic interstitial nephritis,
sitaxentan treatment moderately improved kidney func-
tion and alleviated tubular atrophy, while combined
sitaxentan + cinacalcet improved both kidney function
and several indices of tubulointerstitial damage. In the
present model, the mRNA and protein contents of kid-
ney tissue TGF-$31 increased, CTGF mRNA increased,
those of ACE and AT,z remained unchanged, while
mRNAs of renin, ATz, ATor, Mas, and PRR were
reduced by 40-60%, and that of ACE2 was suppressed
by 94%. ETA antagonism with sitaxentan reduced
plasma phosphate and PTH concentrations, and reduced
kidney CTGF mRNA content. Sitaxentan and cinacalcet,
alone and in combination, further reduced kidney renin
mRNA by 40% when compared with the Ade group.
Cinacalcet was without effect on renal function but sig-
nificantly reduced plasma PTH, decreased kidney CTGF
mRNA, and increased blood hemoglobin. Combined
treatment with sitaxentan and cinacalcet increased renal
tissue ACE2 mRNA content and normalized urinary cal-
cium losses in the adenine rat model of CRL

Additional file

Additional file 1: Figure S1. Representative original blot of TGF-1
Western blotting. (PDF 163 kb)

Abbreviations

ACE: Angiotensin converting enzyme; Ade: 0.3% adenine diet;

ANOVA: Analysis of variance; AT;,z: Angiotensin Il receptor type 1,

AT,r: Angiotensin Il receptor type 2; AT,z: Angiotensin IV receptor; BP: Blood
pressure; CaSR: Calcium sensing receptor; CKD: Chronic kidney disease;

CRI: Chronic renal insufficiency; CTGF: Connective tissue growth factor;
ESRD: End stage renal disease; ETA: Endothelin receptor A; PRR: (pro)renin
receptor; PTH: Parathyroid hormone; RAS: Renin-angiotensin system;

SHPT: Secondary hyperparathyroidism

Acknowledgements
Sitaxentan was kindly donated by Pfizer Pharmaceutical Company, New York, NY.

Funding

The research leading to these results was supported by the Finnish Kidney
Foundation, the Finnish Foundation for Cardiovascular Research, the
Competitive State Research Financing of the Expert Responsibility Area of
Tampere University Hospital, the Pirkanmaa Regional Fund of the Finnish
Cultural Foundation, and the Competitive Research Funding of the Hospital
District of Helsinki and Uusimaa.

Availability of data and materials
The datasets used and analyzed during the current study are available from
the corresponding author on reasonable request.

Page 12 of 13

Authors’ contributions

ST, IP and AE carried out the experimental animal work. ST, IP and AE
performed statistical analyses and drafted the manuscript with JM. PL and IT
performed the mRNA analyses, and ON all other chemical and hormonal
laboratory determinations. JM participated in the study design. TP designed
and supervised the histological analyses that were carried out by ST and JM.
IP-and AE conceived the study design, financed the study, and completed
the manuscript with ST. All authors read and approved the final manuscript.

Ethics approval

The experimental design was approved by the Animal Experimentation
Committee of the University of Tampere, and the Provincial Government of
Western Finland, Department of Social Affairs and Health, Finland;
identification number ESLH-2008-03943/Ym-23. The investigation conforms
to the Guiding Principles for Research Involving Animals.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

1IEaculty of Medicine and Life Sciences, University of Tampere, Tampere,
Finland. “Department of Internal Medicine, Tampere University Hospital,
Tampere, Finland. 3Minerva Institute for Medical Research, Helsinki, Finland.
“Clinical Chemistry and Hematology, University of Helsinki and Helsinki
University Hospital, Helsinki, Finland. >Abdominal Center, Nephrology,
University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
SMedical Research Unit, Seinajoki Central Hospital, Seingjoki, Finland. “Fimlab
Laboratories, Tampere, Finland. ®School of Medicine / Internal Medicine,
FIN-33014 University of Tampere, Tampere, Finland.

Received: 11 January 2017 Accepted: 17 October 2017
Published online: 27 October 2017

References

1. Eckardt KU, Coresh J, Devuyst O, Johnson RJ, Kottgen A, Levey AS, et al.
Evolving importance of kidney disease: from subspecialty to global health
burden. Lancet. 2013;382:158-69.

2. Meguid El Nahas A, Bello AK. Chronic kidney disease: the global challenge.
Lancet. 2005;365:331-40.

3. Khwaja A, El Kossi M, Floege J, EI Nahas M. The management of CKD: a look
into the future. Kidney Int. 2007;72:1316-23.

4. Noronha IL, Fujihara CK;, Zatz R. The inflammatory component in progressive
renal disease—are interventions possible? Nephrol Dial Transplant. 2002;17:363-8.

5. Tamagaki K, Yuan Q, Ohkawa H, Imazeki I, Moriguchi Y, Imai N, et al. Severe
hyperparathyroidism with bone abnormalities and metastatic calcification in
rats with adenine-induced uraemia. Nephrol Dial Transplant. 2006,21:651-9.

6. Yokozawa T, Oura H, Okada T. Metabolic effects of dietary purine in rats. J
Nutr Sci Vitaminol (Tokyo). 1982;28:519-26.

7. Yokozawa T, Zheng PD, Oura H. Biochemical features induced by adenine
feeding in rats. Polyuria, electrolyte disorders, and 2,8-dihydroxyadenine
deposits. J Nutr Sci Vitaminol (Tokyo). 1984;30:245-54.

8. Ataka K, Maruyama H, Neichi T, Miyazaki J, Gejyo F. Effects of erythropoietin-
gene electrotransfer in rats with adenine-induced renal failure. Am J Nephrol.
2003,;23:315-23.

9. Katsumata K, Kusano K, Hirata M, Tsunemi K, Nagano N, Burke SK, et al.
Sevelamer hydrochloride prevents ectopic calcification and renal
osteodystrophy in chronic renal failure rats. Kidney Int. 2003;64:441-50.

10. Wu M, Tang RN, Liu H, Xu M, Pan MM, Liu BC. Cinacalcet attenuates the
renal endothelial-to-mesenchymal transition in rats with adenine-induced
renal failure. Am J Physiol Renal Physiol. 2014;306:F138-46.

11, Lacour B, Lucas A, Auchere D, Ruellan N, de Serre Patey NM, Drueke TB.
Chronic renal failure is associated with increased tissue deposition of
lanthanum after 28-day oral administration. Kidney Int. 2005;67:1062-9.


dx.doi.org/10.1186/s12882-017-0742-z

Térméanen et al. BMIC Nephrology (2017) 18:323

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin
system: from physiology to the pathobiology of hypertension and kidney
disease. Pharmacol Rev. 2007,59:251-87.

Siragy HM, Carey RM. Role of the intrarenal renin-angiotensin-aldosterone
system in chronic kidney disease. Am J Nephrol. 2010;31:541-50.

Ruster C, Wolf G. Angiotensin Il as a morphogenic cytokine stimulating
renal fibrogenesis. J Am Soc Nephrol. 2011;22:1189-99.

Dhaun N, Goddard J, Webb DJ. The endothelin system and its antagonism
in chronic kidney disease. J Am Soc Nephrol. 2006;17:943-55.

Kohan DE, Barton M. Endothelin and endothelin antagonists in chronic
kidney disease. Kidney Int. 2014;86:396-904.

Schneider MP, Mann JF. Endothelin antagonism for patients with chronic
kidney disease: still a hope for the future. Nephrol Dial Transplant. 2014;
29(Suppl 1):i69-73.

Vignon-Zellweger N, Heiden S, Miyauchi T, Emoto N. Endothelin and endothelin
receptors in the renal and cardiovascular systems. Life Sci. 2012,91:490-500.

Ritz E, Gross ML, Dikow R. Role of calcium-phosphorous disorders in the
progression of renal failure. Kidney Int Suppl. 2005:566-70.

Erdranta A, Riutta A, Fan M, Koskela J, Tikkanen |, Lakkisto P, et al. Dietary
phosphate binding and loading alter kidney Angiotensin-converting
enzyme mRNA and protein content in 5/6 nephrectomized rats. Am J
Nephrol. 2012,35:401-8.

Erdranta A, Tormanen S, Koobi P, Vehmas T, Lakkisto P, Tikkanen |, et al.
Phosphate binding reduces aortic angiotensin-converting enzyme and
enhances nitric oxide bioactivity in experimental renal insufficiency. Am J
Nephrol. 2014;39:400-8.

Porsti I, Fan M, Kéobi P, Jolma P, Kalliovalkama J, Vehmas TI, et al. High
calcium diet down-regulates kidney angiotensin-converting enzyme in
experimental renal failure. Kidney Int. 2004,66:2155-66.

Lee SY, Kim SI, Choi ME. Therapeutic targets for treating fibrotic kidney
diseases. Transl Res. 2015;165:512-30.

Okada H, Kaneko Y, Yawata T, Uyama H, Ozono S, Motomiya Y, et al. Reversibility
of adenine-induced renal failure in rats. Clin Exp Nephrol. 1999;3:82-8.

Kawata T, Nagano N, Obi M, Miyata S, Koyama C, Kobayashi N, et al.
Cinacalcet suppresses calcification of the aorta and heart in uremic rats.
Kidney Int. 2008;74:1270-7.

Koleganova N, Piecha G, Ritz E, Schmitt CP, Gross ML. A calcimimetic (R-568), but
not calcitriol, prevents vascular remodeling in uremia. Kidney Int. 2009;75:60-71.
Levi R, Ben-Dov 1Z, Lavi-Moshayoff V, Dinur M, Martin D, Naveh-Many T, et
al. Increased parathyroid hormone gene expression in secondary
hyperparathyroidism of experimental uremia is reversed by calcimimetics:
correlation with posttranslational modification of the trans acting factor
AUF1. J Am Soc Nephrol. 2006;17:107-12.

Podesser BK, Siwik DA, Eberli FR, Sam F, Ngoy S, Lambert J, et al. ET(a)-receptor
blockade prevents matrix metalloproteinase activation late postmyocardial
infarction in the rat. Am J Physiol Heart Circ Physiol. 2001,280:H984-91.

Tilton RG, Munsch CL, Sherwood SJ, Chen SJ, Chen YF, Wu C, et al.
Attenuation of pulmonary vascular hypertension and cardiac hypertrophy
with sitaxsentan sodium, an orally active ET(a) receptor antagonist. Pulm
Pharmacol Ther. 2000;13:87-97.

Dupont WD, Plummer WD Jr. Power and sample size calculations. A review
and computer program. Control Clin Trials. 1990;11:116-28.

Keppler A, Gretz N, Schmidt R, Kloetzer HM, Groene HJ, Lelongt B, et al.
Plasma creatinine determination in mice and rats: an enzymatic method
compares favorably with a high-performance liquid chromatography assay.
Kidney Int. 2007,71:74-8.

Schwarz U, Amann K, Orth SR, Simonaviciene A, Wessels S, Ritz E. Effect of
1,25 (OH)2 vitamin D3 on glomerulosclerosis in subtotally nephrectomized
rats. Kidney Int. 1998;53:1696-705.

el Nahas AM, Bassett AH, Cope GH, Le Carpentier JE. Role of growth hormone in
the development of experimental renal scarring. Kidney Int 1991,40:29-34.
Veniant M, Heudes D, Clozel JP, Bruneval P, Menard J. Calcium blockade
versus ACE inhibition in clipped and unclipped kidneys of 2K-1C rats. Kidney Int.
1994:46:421-9.

Lakkisto P, Palojoki E, Backlund T, Saraste A, Tikkanen |, Voipio-Pulkki LM,

et al. Expression of heme oxygenase-1 in response to myocardial infarction
in rats. J Mol Cell Cardiol. 2002;34:1357-65.

K/DOQI. Clinical practice guidelines for chronic kidney disease: evaluation,
classification and stratification. Am J Kidney Dis. 2002;39(Suppl 1):51-S266.
Nguy L, Johansson ME, Grimberg E, Lundgren J, Teerlink T, Carlstrom M,

et al. Rats with adenine-induced chronic renal failure develop low-renin,

38.

39.

40.

42.

43.

44,

45.

46.

47.

48.

49.

50.

52.

53.

54.

55.

Page 13 of 13

salt-sensitive hypertension and increased aortic stiffness. Am J Physiol Regul
Integr Comp Physiol. 2013;304:R744-52.

Santana AC, Degaspari S, Catanozi S, Delle H, de Sa Lima L, Silva C, et al.
Thalidomide suppresses inflammation in adenine-induced CKD with uraemia in
mice. Nephrol Dial Transplant. 2013;28:1140-9.

Bergesio F, Monzani G, Ciuti R, Serruto A, Benucci A, Frizzi V, et al. Lipids
and apolipoproteins change during the progression of chronic renal failure.
Clin Nephrol. 1992,38:264-70.

Kastarinen H, Horkko S, Kauma H, Karjalainen A, Savolainen MJ, Kesaniemi
YA. Low-density lipoprotein clearance in patients with chronic renal failure.
Nephrol Dial Transplant. 2009,24:2131-5.

Menon MC, Ross MJ. Epithelial-to-mesenchymal transition of tubular epithelial
cells in renal fibrosis: a new twist on an old tale. Kidney Int. 2016,89:263-6.
Rao DS, Shih MS, Mohini R. Effect of serum parathyroid hormone and bone
marrow fibrosis on the response to erythropoietin in uremia. N Engl J Med.
1993;328:171-5.

lkeda R, Imai Y, Maruyama W, Mizoguchi K. Systemic disorders of calcium
dynamics in rats with adenine-induced renal failure: implication for chronic
kidney disease-related complications. Nephrology (Carlton). 2010;15:54-62.
Cianferotti L, Gomes AR, Fabbri S, Tanini A, Brandi ML. The calcium-sensing
receptor in bone metabolism: from bench to bedside and back. Osteoporos
Int. 2015,26:2055-71.

Yin JJ, Mohammad KS, Kakonen SM, Harris S, Wu-Wong JR, Wessale JL, et al.
A causal role for endothelin-1 in the pathogenesis of osteoblastic bone
metastases. Proc Natl Acad Sci U S A. 2003;100:10954-9.

Fyhrquist F, Saijjonmaa O. Renin-angiotensin system revisited. J Intern Med.
2008;264:224-36.

Gregorini M, Corradetti V, Rocca C, Pattonieri EF, Valsania T, Milanesi S, et al.
Mesenchymal Stromal cells prevent renal fibrosis in a rat model of unilateral
Ureteral obstruction by suppressing the Renin-Angiotensin system via HuR.
PLoS One. 2016;11:0148542.

Pinheiro SV, Ferreira AJ, Kitten GT, da Silveira KD, da Silva DA, Santos SH,

et al. Genetic deletion of the angiotensin-(1-7) receptor Mas leads to
glomerular hypeffiltration and microalbuminuria. Kidney Int. 2009;75:1184-93.
Riediger F, Quack I, Qadri F, Hartleben B, Park JK, Potthoff SA, et al. Prorenin
receptor is essential for podocyte autophagy and survival. J Am Soc
Nephrol. 2011,22:2193-202.

Wolf G. Renal injury due to renin-angiotensin-aldosterone system activation
of the transforming growth factor-beta pathway. Kidney Int. 2006;70:1914-9.
Qi W, Chen X, Poronnik P, Pollock CA. Transforming growth factor-beta/
connective tissue growth factor axis in the kidney. Int J Biochem Cell Biol.
2008;40:9-13.

Gupta S, Clarkson MR, Duggan J, Brady HR. Connective tissue growth factor:
potential role in glomerulosclerosis and tubulointerstitial fibrosis. Kidney Int.
2000;58:1389-99.

Mason RM. Connective tissue growth factor(CCN2), a pathogenic factor in
diabetic nephropathy. What does it do? How does it do it? J Cell Commun
Signal. 2009;3:95-104.

Kok HM, Falke LL, Goldschmeding R, Nguyen TQ. Targeting CTGF, EGF and
PDGF pathways to prevent progression of kidney disease. Nat Rev Nephrol.
2014;10:700-11.

Falke LL, Dendooven A, Leeuwis JW, Nguyen TQ, van Geest RJ, van der
Giezen DM, et al. Hemizygous deletion of CTGF/CCN2 does not suffice to
prevent fibrosis of the severely injured kidney. Matrix Biol. 2012;31:421-31.



	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Animals and experimental design
	Sample size calculation
	Hormonal and chemical analyses
	Renal histology
	Real-time quantitative RT-PCR
	Western blotting of TGF-ß1
	Data presentation and analysis of results

	Results
	Animal data
	Laboratory findings
	Renal histology
	Renal RAS, CTGF and TGF-ß1 mRNAs, and TGF-ß1 protein

	Discussion
	Conclusions
	Additional file
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

