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by hepatic dysfunction
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Abstract

Background: Beta Trace Protein (BTP) is a promising marker of glomerular filtration rate (GFR). Equations to estimate GFR
using BTP have been proposed. Very little is known about BTP’s production and metabolism. It has been hypothesized

that the liver metabolizes certain BTP isoforms. As such, hepatic dysfunction may influence serum levels independently
of GFR. This would impact on the accuracy and precision of GFR estimates using BTP. The purpose of this study was to
assess the impact of cirrhosis on serum BTP concentrations.

Methods: BTP, cystatin C (cysC) and creatinine (Cr) were measured in 99 cirrhotic subjects and in matched controls.
BTP/cysC and Cr/cysC ratios were compared between cases and controls. This was repeated after stratification by Child
Pugh category. Comparisons of ratios between Child Pugh category A and combined B and C case subjects
were also performed.

Results: There were no differences in BTP/cysC ratios between cases and controls for the entire cohort (0.80 vs 0.79)
or for any of the Child Pugh categories (p > 0.10). There were significant differences between cases (1.09) and controls
(0.73) for the BTP/Cr ratios (p < 0.001). The BTP/Cr ratio was higher in those with more advanced cirrhosis as compared
to those with less severe cirrhosis (1.20 vs 1.03, p < 0.01). There were no differences in BTP/cysC ratios between those
with less severe and more advanced cirrhosis (p = 0.25).

Conclusions: This study suggests that hepatic dysfunction does not influence serum BTP levels and argues against a
significant role for the liver in BTP metabolism. Confirmation in a larger group of patients with advanced cirrhosis

CrossMark

is required.

Keywords: Beta trace protein, Cirrhosis, Creatinine, Cystatin C, Glomerular filtration rate

Background

Beta Trace Protein (BTP) is a low molecular weight glyco-
protein and a novel endogenous marker of glomerular
filtration rate (GFR) [1]. First described in 1961 [2], it was
noted to be increased in the serum of patients with renal
disease in 1997 [3]. Subsequent investigations have
examined the utility of BTP as a marker of GFR in a
variety of patient populations [4-9]. Some evidence
suggests that it is more sensitive than creatinine (Cr) at
detecting early changes in GFR [10, 11]. Several BTP-
based GFR estimation equations have been proposed [8,
12-15]. These however have generally been found to less
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accurate and more imprecise than equations containing
Cr and cystatin C (cysC) suggesting a greater impact of
non-GFR determinants on serum BTP concentrations as
compared to the other two filtration markers [8, 16]. Non-
GFR determinants of BTP concentrations thus further
identified include serum albumin concentration, gender,
urine protein excretion and weight [17, 18].

Unlike Cr, very little is known about the origin and
metabolism of BTP. BTP is a heterogeneous glycopro-
tein with multiple isoforms and is present in various
fluid compartments including blood, urine and cerebral
spinal fluid (CSF) [1, 3]. Smaller non-sialyzed isoforms
predominate in the CSF whereas the larger sialylated
isoforms predominate in the serum and urine [3]. While
a number of cell types have been demonstrated to
produce BTD, the origin of serum BTP is unclear [1]. It
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has been hypothesized to result from diffusion from the
CSF based on the glycosylation patterns of BTP glyco-
forms which are most typical for CSF as supposed to
hepatic glycoproteins [2, 3]. In an animal study, intra-
thecally administered recombinant BTP was recovered
from serum lending support for a CNS origin [19]. It
has been further hypothesized that the non-sialylated
“brain” glycoforms are then rapidly eliminated from
blood by the liver leaving a predominance of the “blood/
urine” sialylated glycoforms [3].

The impact of hepatic dysfunction on serum BTP
concentrations has never been investigated. Its effect on
serum Cr concentrations is well recognized with
depressed serum concentrations due to decreased
hepatic synthesis of its precursor creatine, malnutrition
and muscle wasting [20, 21]. These factors significantly
hamper the assessment of kidney function in cirrhotics
[20-22]. If the above described hypotheses are correct,
non-sialyated BTP isoforms would accumulate in the
circulation in the setting of hepatic dysfunction, leading
to increased serum levels and reduced accuracy of BTP-
based GFR estimates. The aim of this study was to deter-
mine whether patients with hepatic dysfunction have
higher than expected serum BTP concentrations due to
reduced hepatic clearance of the non-sialyzed isoforms.

Methods
This case-control study received institutional ethics
approval and was conducted between June—October
2014 at the academic hospitals of Queen’s University
Kingston, ON, Canada. Case subjects were recruited in
the tertiary care Liver Clinic staffed by two subspecialty
trained hepatologists and included if they had a diagnosis
of cirrhosis and excluded if they were dialysis dependent
or had known acute kidney injury. The diagnosis of
cirrhosis was confirmed by the hepatologists according to
standard clinical criteria of either 1) cirrhosis on liver
biopsy; 2) evidence of portal hypertension or hepatic
decompensation in the form of ascites, esophageal varices
or hepatic encephalopathy or; 3) Non-invasive testing
(FibroTest®© or FibroScan®) estimating F4 fibrosis in an
individual with known chronic liver disease. Basic
demographic, clinical and laboratory data were collected
including diabetes status, etiology of cirrhosis, presence of
ascites or encephalopathy, INR, albumin and bilirubin.
Child Pugh Class and MELD scores were calculated [23,
24]. The Child Pugh classification incorporates five vari-
ables (albumin, ascites, encephalopathy, INR) while the
MELD score includes bilirubin, Cr, and INR (Table 1).
Control subjects consisted of patients attending renal
clinics who had blood work done in clinic as part of
routine clinical care. Exclusion criteria were known liver
disease or cirrhosis. Renal patients were chosen as the
control group because they have sufficient residual
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Table 1 Child Pugh and MELD scores
Child Pugh®
Measure 1 point 2 points 3 points
Bilirubin, (mg/dl) <2 2-3 >3
Albumin, g/dl >35 2.8-35 <28
INR <17 1.71-2.30 >2.30
Ascites None  Mild Moderate to severe
Hepatic encephalopathy None  Grade Il Grade IlI-IV

(or suppressed) (or refractory)
MELD score®
(0957 * loge(creatinine) + 0378 * loge(bilirubin) + 1.120 * loge(INR) + 06431) *10

2Class A (5,6 points), Class B (7-9 points), Class C (10-15 points)
PCreatinine and bilirubin in mg/dL, maximum creatinine concentration is 4.0 mg/dL

serum left after their routine biochemistry is performed
to allow for study analyte measurement. Controls were
matched 1:1 to case patients by age (per 10 year strata),
gender and diabetes status as these variables are associated
with cystatin C or BTP independently of GFR [18, 25].

Cystatin C (cysC), BTP (Siemen’s nephelometric assays)
and Cr (Vitros Chemistry enzymatic assay) were measured
at the Children’s Hospital of Eastern Ontario, ON, Canada.
The BTP/cysC ratio was calculated for each subject. The
BTP/cysC ratio was chosen in lieu of the BTP/Cr ratio due
to the well-recognized inaccuracy of serum creatinine as a
marker of GFR in the setting of hepatic dysfunction. Prior
studies have shown a strong inverse relationship between
inulin GFR and cysC in cirrhotic patients and a lack of
impact of cirrhosis on serum cysC levels, suggesting that
cysC is an acceptable surrogate for measured GFR [20, 26].
As the control group had known CKD, the BTP/cysC ratio
was selected for the outcome instead of the BTP serum
concentration in order to adjust for GFR. The difference in
mean BTP/cysC ratio between the groups was compared
using t-tests. This was repeated after subdividing patients
by Child Pugh classification. Similar analysis was done
using BTP/Cr. The BTP/cysC and BTP/Cr ratios of the
combined Child Pugh B and C category cirrhotics were
compared using t tests to those of the Child Pugh A
category cirrhotic case subjects.

Results

A total of 99 case patients were recruited over the study
period and were matched with 99 controls. Patient
characteristics are shown in Table 2. As expected, case
and control subjects were similar with respect to age,
gender and diabetic status. Thirty one percent of both
case and control groups were diabetic. The most
common etiology of cirrhosis was hepatitis C (38%). The
majority of case patients had compensated cirrhosis
(61% Child Pugh A). Mean MELD score was 11.0 + 3.8.
Mean Cr was significantly higher in controls (2.59 vs 0.85
in cirrhotics, p <0.001). BTP and cysC were also higher in
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Table 2 Case and control subject characteristics
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Table 2 Case and control subject characteristics (Continued)

Characteristic Case (n=99) Controls (n=99) P value

Characteristic Case (n=99) Controls (n=99) P value

Male, N (%) 70 (71) 70 (71) 0.88
Age, (SD) years 594 (7.9) 604 (8.6) 040
Diabetes, N(%) 31 (31) 31 (31) 0.88
Cirrhosis etiology Not applicable
Hepatitis C 38 (38)
Ethanol 21 (21)
NASH 21 (21)
Hepatitis B 2(2)
Autoimmune 2(2)
Other (PBC, NYD) 6 (6)
Cr, mean (SD), 95% Cl, mg/dL ~ 0.85 (0.25) 259 (0.28) <0.001
0.77-0.93 2.50-267
BTP, mean (SD), 95% Cl, mg/L 093 (041) 192 (1.4) <0.001
0.85-1.01 1.84-2.00
CysC, mean (SD), 95% CI, mg/L 1.17 (0.44) 224 (1.16) <0.001
1.09-1.25 2.16-232
Bilirubin Not measured
mean (SD), mg/dL 16 (14)
<2 mg/dL, N(%) 77 (78)

2-3 mg/dL, N(%) 9 (9

>3 mg/dL, N(%) 13 (13)
Albumin Not measured
mean (SD), g/dL 34 (06)
> 3.5 g/dL, N(%) 47 (48)
2.8-3.5 g/dL, N(%) 42 (42)
<28 g/dL, N(%) 10 (10)
INR Not measured
mean (SD) 13(0.3)
< 1.7, N(%) 90 (91)
1.7-2.3, N(%) 8 (8)
> 2.3, N(%) (M
Ascites N(%)
None, 64 (65) 99
Mild, 33 (33) 0
Moderate-Severe 2(2) 0
Encephalopathy, N(%)
None 80 (81) 99
Grade I-II 19 (19) 0
Grade llI-IV 0 (0) 0
CHILD PUGH category N (%)
A 60 (61) Not applicable
B 27 (27)
C 12(12)

MELD score N (%)

<94 50 (47.6) Not applicable
9.5-19 51 (48.6)
20-29 4(3.8)

the control groups. Scatterplots of the analyte concentra-
tions (case vs controls and Child Pugh A vs Child Pugh
B&C) are found in Fig. 1.

Figure 2 shows the ratios between the analytes. There
were no significant differences between the control and
case BTP/cysC ratios for the whole cohort or for any of
the Child Pugh Classes. In comparison, there was a
significantly higher BTP/Cr ratio in the case group as
compared to the control group for the entire cohort and
for each of the Child Pugh Classes.

The BTP/Cr ratio was higher for the combined Child
Pugh B &C as compared to the Child Pugh A case
subjects (1.20 vs 1.03, p <0.01). There was no difference
in the BTP/cysC ratios between the combined Child Pugh
B &C and Child Pugh A cirrhotic groups (p = 0.25).

Discussion

In this study, we have shown that the serum BTP
concentration is not affected by the presence of cirrhosis.
BTP/cysC ratios were similar to controls, even in those
with the most advanced hepatic dysfunction. The lack of
BTP/cysC ratio differences between the different Child
Pugh categories further supports the absence of hepatic
effect on BTP. This is in contrast to what is observed with
serum Cr. The higher BTP/Cr ratios in the cirrhotic group
and in cirrhotics with more advanced disease reflect a
well-recognized decrease in Cr production in the setting
of cirrhosis [20].

BTP for GFR prediction in the setting of cirrhosis was
recently investigated by Mindikoglu et al. [22] GFR was
measured by plasma clearance of iothalamate and serum
was sampled for Cr, cysC, BTP and other analytes in 103
patients with cirrhosis. Regression analysis was used to
develop a novel GFR prediction equation. The authors
found that adding BTP to cycC and Cr did not confer
any additional benefit for GFR prediction [22]. This
study is somewhat hampered by the use of plasma clearance
technique for GFR determination in most subjects. Plasma
clearance protocols have been shown to be inaccurate in
cirrhosis due to tracer sequestration into inaccessible
compartments (ascites, peripheral edema) and are therefore
not recommended for GFR assessment in this special
population [27, 28]. Nonetheless, the study findings are
consistent with what has been reported in other non-
cirrhotic populations [16].
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Fig. 1 Scatterplots of analytes concentrations: (a) BTP (mg/L) and Creatinine (mg/dL) in full cohort cases and controls: (b) BTP (mg/L) and CysC (mg/dL)
in full cohort cases and controls: (c) BTP (mg/L) and Creatinine (mg/dL) in Child Puch A and Child Pugh B&G; (d) BTP (mg/L) and Cystatin C (mg/L) in
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Our novel results argue against a significant role for
the liver in the metabolism of BTP. Other hypothesis
must therefore be explored to explain the relative amounts
of different BTP isoforms that has been observed in
different fluid compartments. An alternate potential
explanation for our findings is that the anti-BTP anti-
bodies used in Siemens’s nephelometric assay might not
recognize epitopes present in the “brain type” isoforms.
The Siemens assay uses polyclonal antibodies directed
against human urinary BTP and therefore could theoretically

not bind to brain type BTP isoforms. In this case, elevated
brain BTP isoforms may exist but are simply not detectable.

Limitations include the use of CKD patients as the
control group. This patient group was selected as
control for pragmatic reasons: their co-morbidities are
well documented, they are numerous and, unlike most
other patient groups, they have routine phlebotomy with
large volumes of residual plasma in which additional
analytes can be measured. The absence of measured
GFR is another limitation. Measuring GFR using
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Fig. 2 Mean BTP/cysC (a) and BTP/Cr ratios (b). Data are presented as the mean and standard deviation. There are no significant differences in BTP/cysC
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exogenous markers is expensive and cumbersome
particularly in the setting of cirrhosis which requires the
more difficult urinary clearance methods to prevent GFR
overestimation due to tracer clearance in extravascular
compartments. Confirmation of study findings using a
measured GFR would be beneficial. Finally, only 12% of
the study population have advanced cirrhosis (12% Child
Pugh C) which hinders extrapolation of study findings to
those with advanced disease.

Conclusions

It is well recognized that a number of factors (muscle
mass, diet, hepatic function) influence serum Cr inde-
pendently of GFR and these contribute significantly to the
difficulties in accurately assessing GFR using Cr [22, 29].
This study suggests that, unlike serum Cr, serum BTP
concentrations are independent of hepatic dysfunction.
Additional studies exploring any incremental benefit of
adding BTP to the existing panel of endogenous GFR
markers in cirrhosis are needed. In addition, further study
of other non-GFR dependent factors which may influence
serum BTP concentration levels is required to allow for a
better understanding of how to best incorporate BTP into
clinical care.
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