
RESEARCH ARTICLE Open Access

Gene alterations in monocytes are
pathogenic factors for immunoglobulin a
nephropathy by bioinformatics analysis of
microarray data
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Abstract

Background: Immunoglobulin A nephropathy (IgAN) is the most frequent primary glomerulopathy worldwide. The
study aimed to provide potential molecular biomarkers for IgAN management.

Methods: The public gene expression profiling GSE58539 was utilized, which contained 17 monocytes samples (8
monocytes samples isolated from IgAN patients and 9 monocytes samples isolated from healthy blood donors). Firstly,
differentially expressed genes (DEGs) between the two kinds of samples were identified by limma package. Afterwards,
pathway enrichment analysis was implemented. Thereafter, protein-protein interaction (PPI) network was constructed
and key nodes in PPI network were predicted using four network centrality analyses. Ultimately, gene functional
interaction (FI) was constructed according to expressions in each sample, and then module network was extracted
from FI network.

Results: A total of 678 DEGs were screened out, of these, 72 DEGs were identified as crucial nodes in PPI network that
could well distinguish IgAN and healthy samples. In particular, IL6, TNF, IL1B, PRKACA and CCL20 were closely related to
pathways such as hematopoietic cell lineage, apoptosis and Toll-like receptor (TLR) signaling pathway. Moreover, 12
genes in the FI network belonged to the 72 identified key nodes, such as CCL20, HDAC10, FPR2 and PRKACA, which
were also key genes in 4 module networks.

Conclusions: Several crucial genes were identified in monocytes of IgAN patients, such as IL6, TNF, IL1B, CCL20, PRKACA,
FPR2 and HDAC10. These genes might co-involve in pathways such as TLR and apoptosis signaling during IgAN
progression.

Keywords: Immunoglobulin a nephropathy, Network centrality analysis, Functional interaction, Toll-like receptor
signaling, Apoptosis

Background
Worldwide, immunoglobulin A nephropathy (IgAN) is
the most frequent primary glomerulopathy. Reportedly,
20–50% of adults who suffered with IgAN would progress
to end-stage renal diseases [1]. Therefore, it is pivotal for
IgAN patients to identify predictors of prognosis. Numer-
ous risk factors associated with IgAN progression have

been reported. A study in Chinese population identifies
three risk factors, including renal impairment, hyperten-
sion as well as advanced histological involvement [2].
Besides, another study reveals that expressions of renal
leukocyte infiltrations and cytokines, such as leukocyte
common antigen (LCA), CD3, CD68 and interleukin-1Beta
(IL1B), are highly correlated with IgAN [3]. Currently, bio-
chemical and genetic data indicate that aberrantly glycosyl-
ated IgA1 play significant roles in pathogenesis of IgAN
[4–6]. Moreover, alteration on the glycan structure of IgA1
causes the deposition of nephritogenic immune complexes,
which induce resident mesangial cells proliferation and
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extracellular matrix proteins expression, and subsequently
lead to the loss of glomerular function [7]. Based on the
pathogenesis, several biomarkers have been identified, such
as levels of urinary secretory (sIgA) [8], serum
galactose-deficient immunoglobulin A1 (Gd-IgA1) [9] and
the tandem repeats polymorphism of MUC20 gene [10].
However, cellular events involved in the IgAN pathogenesis
are unclear.
Recently, it is found that abnormality of IgAN disease

is related to IgA immune system and peripheral blood
leucocytes, especially the peripheral blood mononuclear
cells [11, 12]. Monocytes, a kind of the phagocytes that
formed in bone marrow, can differentiate into macro-
phages and dendritic cells (DCs) in peripheral tissues.
Monocytes have a crucial part in immune response and
may contribute to the pathogenesis of IgAN [13]. Thus,
a guideline for target therapy of IgAN will be obtained
through identifying gene alterations in monocytes of
IgAN patients. Moreover, Cox et al. uncover that the al-
tered genes in IgAN monocytes are mainly associated
with apoptotic pathway and mitochondrial dysfunction
[13]. In particular, the expression of NADH: ubiquinone
oxidoreductase core subunit S3 (NDUFS3) and TNF
receptor superfamily member 1A (TNFRSF1A) proteins
are upregulated, thus verifying the altered mitochondrial
respiratory system and death receptor homeostasis. Add-
itionally, the TNF expression in monocytes of IgAN pa-
tients are reduced compared with those in healthy blood
donors (HBDs) [13]. However, other critical genes and
their interaction have not been investigated.
In the present study, we re-analyzed GSE58539 profil-

ing using a more comprehensive bioinformatics. After
identifying the differentially expressed genes (DEGs) in
monocytes between IgAN patients and HBDs, functional
enrichment and protein-protein interactions (PPIs) net-
work analyses were carried out, followed by key nodes
prediction of the network through four network central-
ity analyses. Notably, in order to reveal potential interac-
tions of DEGs that involved in similar functions and
pathways, gene functional interaction (FI) network and
the module network analyses were performed based on
gene expressions of each sample. The study aimed to
further uncover the pathogenesis and progression of
IgAN, and thus provide potential molecular biomarkers
for the diagnosis and targeting therapy of IgAN.

Methods
Data resource
The microarray data GSE58539 [13] was downloaded from
Gene Expression Omnibus (GEO, http://www.ncbi.nlm.-
nih.gov/geo) database. This dataset contained 17 mono-
cytes samples, including 8 monocytes samples isolated
from IgAN patients (IgAN group) and 9 monocytes sam-
ples isolated from HBDs (healthy group). The platform of

the dataset was Illumina HumanHT-12 V4.0 expression
beadchip (Illumina, San Diego, California, USA).

Data preprocessing
We used the robust multi-array average (RMA) method
in Linear Models for Microarray Analysis (limma, http://
www.bioconductor.org/packages/release/bioc/html/lim-
ma.html) package of R [14] to preprocess the
non-normalized raw data by performing background
correction, quantile normalization and microarray data
condensation. Afterwards, the probe identification num-
bers (IDs) were transformed into gene symbols utilizing
illuminaHumanv4.db [15] and annotate [16] software in
R package and the probes were eliminated which did not
correspond to gene symbols. Finally, the average value of
different probes would serve as the final expression of
the gene if different probes were mapped to the same
gene.

DEGs identification
Non-paired t-test method in limma package was utilized
to calculate significance p-value of the DEGs between
IgAN and healthy samples. The thresholds for DEG se-
lection were p-value < 0.05 and log2|fold change| ≥ 0.58.
Subsequently, coupled two-way clustering analysis
(CTWC) was conducted using gplots tools [17] in R
package.

Enrichment analysis of the DEGs
The Database for Annotation, Visualization and Integra-
tion Discovery (DAVID, http://david.abcc.Ncifcrf.gov/)
[18] tool was used to conduct Gene ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG,
http://www.genome.jp/kegg/pathway.html) [19] pathway
enrichment analyses for DEGs. The number of enrich-
ment genes (count number) ≥ 2 and p-value < 0.05 were
chosen as cut-off criteria.

Construction of the PPI network
The Search Tool for the Retrieval of Interacting Genes
(STRING, http://string-db.org/) [20] database was used
to predict potential interactions among proteins encoded
by the DEGs. Relevant parameters were as follows: spe-
cies was “Homo”, the input genes were DEGs and the
PPI score (referred to medium confidence) was set as
0.4. A protein in the PPI network serves as a node. The
network was visualized by the Cytoscape (http://cytosca-
pe.org/) software [21].

Prediction of key nodes in the PPI network
The topological property of PPI network makes it pos-
sible to investigate key genes in the network. Here, four
network centrality analyses were performed to explore
the key genes, including degree centrality, betweenness
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centrality, subgraph centrality and closeness centrality of
key genes. Generally, degree was used for describing the
importance of protein nodes in the network, and be-
tweenness centrality is a kind of indicator that describes
the global topological properties of the network. Besides,
subgraph centrality was used to measure the importance
of nodes in the network based on the combination of
network topology and protein complex information.
Closely centricity represented the closely connection de-
gree of a certain node and all other nodes [22–25].
A cytoscape plug-in, CytoNCA [26], was used to per-

form the above analyses. Nodes with high values in the
above four network centrality analyses were screened
out to predict key genes, and the genes influence on
sample clustering were observed using gplots packages.
Detailed steps for the selection of key genes were: (1)
the top ten genes with high values calculated by each
network centrality analysis were selected and then were
integrated; (2) if these integrated genes could not well
distinguish the IgAN and healthy samples, more nodes

were gradationally selected based on their ranked values
to conduct the clustering analysis till they could distin-
guish completely the two kinds of samples. These key
genes were then defined as feature genes of IgAN and
healthy samples.

FI network analysis
Based on gene expression value of each sample, the gene FI
network was established using Cytoscape app-ReactomeFI
[27]. The input dataset was the expression matrix of all
DEGs. The FI network was analyzed utilizing ReactomeFI
and the gene functional interaction in the PATHWAY of
the Reactome database, thereafter modules from the FI net-
work were obtained through Monte Carlo Localization
clustering algorithm [28]. In addition, co-expression rela-
tionships of genes in each module were determined accord-
ing to their expression value. The selection parameters in
ReactomeFI network were module size ≥7 and average cor-
relation ≥0.25. Subsequently, pathway enrichment analysis
was carried out for each functional module to identify

Fig. 1 Heat map of clustering analysis of gene expressions in different samples. X-axis represents samples, and Y-axis represents gene expressions
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potential biological pathways associated with genes in each
module, and the threshold for significant pathway selection
was false discovery rate (FDR) < 0.05.

Results
DEGs identification
Here, we obtained a total of 453 up-regulated and 225
down-regulated DEGs. As indicated in the clustering
heat map (Fig. 1), these DEGs could well distinguish the
IgAN and healthy samples completely.

Pathway enrichment analysis of the DEGs
Unfortunately, the up-regulated DEGs were not enriched
in any pathways. However, the down-regulated DEGs
were significantly enriched in nine pathways. The
enriched pathways were listed in Table 1, including
hematopoietic cell lineage (pathway, p-value = 7.92 × 10−
4; which involved interleukin-6 (IL6), tumor necrosis fac-
tor (TNF) and interleukin 1 beta (IL1B)), NOD-like recep-
tor signaling pathway (pathway, p-value = 8.22 × 10− 3;
which involved IL6, TNF and IL1B), cytokine-cytokine re-
ceptor interaction (pathway, p-value = 1.91 × 10− 2; which
involved IL6, TNF, IL1B and C-C motif chemokine ligand
20 (CCL20)), intestinal immune network for IgA produc-
tion (pathway, p-value = 2.52 × 10− 2; which involved IL6)
and apoptosis (pathway, p-value = 2.58 × 10− 2; which in-
volved TNF and IL1B).

PPI network of the DEGs
As presented in Fig. 2, the PPI network with 379 nodes
and 692 interactions was constructed. The hub nodes
(whose degree > 10) mainly included TNF (degree = 31),
PRKACA (degree = 26), IL6 (degree = 23), YWHAZ (de-
gree = 19), MYB (degree = 15), TYK2 (degree = 14), FPR2
(degree = 13), IL1B (degree = 13), CCL20 (degree = 12),
GNA11 (degree = 11).

Key nodes in the PPI network
Combined with the integrating results by four network
centrality analyses, nodes with higher degree were used to
cluster the two different kinds of samples. As a result, a
total of 72 genes were identified that could well distin-
guish IgAN and healthy samples (Fig. 3). Among them,
genes such as IL6, TNF, IL1B, PRKACA, TYK2 and CCL20
were closely related to five the pathways, including
NOD-like receptor signaling pathway, cytokine-cytokine
receptor interaction, hematopoietic cell lineage, apoptosis,
and Toll-like receptor signaling pathway (Table 2).

FI network analysis
The FI network of the DEGs was constructed utilizing
ReactomeFI, which included 42 genes and 71 interaction
edges (Fig. 4). Moreover, five modules (module a-e) were
extracted from the FI network, and the absolute average
correlation of genes in module a-e was 0.58, 0.4222,
0.5069, 0.4709 and 0.4275, respectively. Genes such as
PRKACA in module a was enriched in integration of en-
ergy metabolism, morphine addiction and glutamatergic
synapse pathways; in module b, genes such as CCL20,
FPR2 and GNA11 were related to GPCR ligand binding,
GPCR downstream signaling and Gastrin-CREB signal-
ing pathway via PKC and MAPK pathways; in module c,
the gene NFYB was highly associated with RNA
binding-related pathways; while in module d, the gene
HDAC10 was significantly enriched in two pathways, al-
coholism and chromatin modifying enzymes (Table 3) .
Genes in module e were not enriched in any pathways.
Notably, we found that 12 genes in the FI network also

belonged to the hub genes, such as CCL20, FPR2, and
PRKACA.

Discussion
In the present study, a total of 72 crucial nodes in the PPI
network were identified via re-analyzing the dataset
GSE58539, which could well distinguish the IgAN and
healthy samples. Among which, genes such as IL6, TNF,

Table 1 Pathway enrichment analysis of the down-regulated differentially expressed genes in monocytes of IgAN patients

Term Count Genes P value

hsa05322:Systemic lupus erythematosus 9 C1QA, HLA-DQB1, HIST1H2AC, TNF, HIST2H2BE, HIST1H2BH, H2AFY2,
HIST3H2A, HLA-DQA2

3.52 × 10−5

hsa05332:Graft-versus-host disease 6 HLA-DQB1, IL6, TNF, IL1B, HLA-DQA2, IL1A 1.29 × 10−4

hsa04640:Hematopoietic cell lineage 7 CD55, IL6, TNF, IL1B, ITGB3, ITGA4, IL1A 7.92 × 10−4

hsa04940:Type I diabetes mellitus 5 HLA-DQB1, TNF, IL1B, HLA-DQA2, IL1A 2.00 × 10−3

hsa04621:NOD-like receptor signaling pathway 5 IL6, TNF, CXCL2, IL1B, TNFAIP3 8.22 × 10−3

hsa05020:Prion diseases 4 C1QA, IL6, IL1B, IL1A 1.02 × 10− 2

hsa04060:Cytokine-cytokine receptor interaction 9 IL6, TNF, CCL20, CXCL3, CXCL2, CSF2RB, IL1B, IL1A, TNFSF8 1.91 × 10−2

hsa04672:Intestinal immune network for IgA production 4 HLA-DQB1, IL6, ITGA4, HLA-DQA2 2.52 × 10−2

hsa04210:Apoptosis 5 TNF, CYCS, CSF2RB, IL1B, IL1A 2.58 × 10−2
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IL1B, PRKACA, and CCL20 were closely related to the fol-
lowing pathways: NOD-like receptor signaling pathway,
cytokine-cytokine receptor interaction, hematopoietic
cell lineage, apoptosis and Toll-like receptor signal-
ing pathway. Moreover, 12 genes in the FI network
belonged to the 72 identified key nodes, such as
CCL20, HDAC10, FPR2 and PRKACA. Besides, the
12 genes were also the key genes in 4 module net-
works correlating with pathways of integration of en-
ergy metabolism (module a), GPCR-related pathways
(module b), RNA binding-related pathways (module
c), alcoholism and chromatin modifying enzymes
(module d).
The cytokine encoded by IL6 has great roles in inflam-

mation and regulation of immune response [29]. Toll-like
receptors (TLRs) are major factors that initiate the im-
mune reaction. Most TLRs promote immune response
(including innate and adaptive) via inducing expression of

proinflammatory cytokines [30]. Increased TLRs, such as
TLR-4, has been detected in circulating monocytes of
patients with IgAN [31]. Expression of IL6 protein is also
increased in mouse proximal tubular epithelial cells, ac-
companying by the upregulation of TLR4 mRNA [32].
IL1B, encoded by IL1B gene, is a member of interleukin 1
cytokine family and crucial for the regulation of inflamma-
tory response [33]. In response to the external infections,
gene expressions of the proinflammatory cytokines (e.
g. IL1A, IL1B and IL6) are always upregulated simul-
taneously [34, 35]. In particular, IL1B is implicated in
the TLR-4 induced immune response in chronic pain
[36]. In our study, IL6 and IL1B were both downregu-
lated and enriched in TLR signaling pathway. These
results suggested that IL6 and IL1B might be
co-regulated in TLR signaling pathway and contribute
to the abnormality of the immune response in mono-
cytes of IgAN patients.

Fig. 2 Protein-protein interaction network of the differentially expressed genes. Circle in red denotes upregulated genes, and in green denotes
downregulated genes
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Fig. 3 Heat map of clustering analysis of key genes predicted by four network centrality analyses in different samples. X-axis represents samples,
and Y-axis represents gene expressions

Table 2 Enrichment analysis of hub genes in the protein-protein interaction network

Term Genes P value

hsa05020:Prion diseases IL6, IL1B, PRKACA, HSPA1B, IL1A 1.30 × 10−4

hsa04630:Jak-STAT signaling pathway TYK2, STAT4, IL6, SOCS2, PIAS3, CSF2RB, CISH 1.03 × 10−3

hsa04621:NOD-like receptor signaling pathway IL6, TNF, CXCL2, IL1B, TNFAIP3 1.20 × 10−3

hsa05332:Graft-versus-host disease IL6, TNF, IL1B, IL1A 3.15 × 10−3

hsa04060:Cytokine-cytokine receptor interaction IL6, TNF, CCL20, CXCL3, CXCL2, CSF2RB, IL1B, IL1A 3.31 × 10−3

hsa04640:Hematopoietic cell lineage IL6, TNF, IL1B, ITGA4, IL1A 4.00 × 10−3

hsa04210:Apoptosis TNF, CSF2RB, IL1B, PRKACA, IL1A 4.17 × 10−3

hsa04620:Toll-like receptor signaling pathway IL6, TNF, IL1B, TLR6, TRAF3 7.08 × 10−3

hsa04940:Type I diabetes mellitus TNF, IL1B, IL1A 4.07 × 10−2
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TNF is a multifunctional proinflammatory cytokine.
Reportedly, TNF expression is dramatically increased in
Mycoplasma penetrans-infected IgAN mice model, and
the protein is proposed to involve in the induction of
renal damage in IgAN [37]. Moreover, levels of serum
TNF receptors are also elevated in IgAN patients

compared with healthy control [38]. However, Cox et al.
uncover that TNF expression is obviously reduced in
monocytes of IgAN patients, compared with those of
HBDs [13]. The finding indicates the downregulated
TNF may lead to the monocytes apoptosis. Moreover,
the inhibition of TNF-α is proposed as a causative factor

Fig. 4 Gene functional interaction network of the differentially expressed genes. Circle in red denotes upregulated genes, and in green denotes
downregulated genes

Table 3 Enrichment analysis of genes in each functional interaction network module

Module GeneSet FDR Genes

a Integration of energy metabolism(R) 8.62 × 10−5 STK11, GNG10, GNB4, PRKACA

a Morphine addiction(K) 8.62 × 10− 5 GNG10, GNB4, PDE4D, PRKACA

a Glutamatergic synapse(K) 1.39 × 10−4 GNG10, GNB4, PRKACA, GRIN3A

b GPCR ligand binding(R) 7.31 × 10−7 PTGIR, CCL20, LPAR6, FFAR2, FPR2, NTSR1, NPFF

b GPCR downstream signaling(R) 4.07 × 10−6 PTGIR, CCL20, LPAR6, FFAR2, GNA11, FPR2, NTSR1, NPFF

b Gastrin-CREB signaling pathway via PKC and MAPK(R) 6.99 × 10−6 LPAR6, FFAR2, GNA11, FPR2, NTSR1, NPFF

c overview of telomerase rna component gene hterc
transcriptional regulation(B)

1.29 × 10−2 NFYB

c DNA Double Strand Break Response(R) 1.62 × 10−2 KDM4B

c Regulation of cholesterol biosynthesis by SREBP (SREBF)(R) 1.62 × 10−2 NFYB

d Alcoholism(K) 1.74 × 10−10 HIST1H2AC, HIST2H2BE, H2AFY2, HIST1H2BH, HDAC10, HIST3H2A

d Systemic lupus erythematosus(K) 6.92 × 10−9 HIST1H2AC, HIST2H2BE, H2AFY2, HIST1H2BH, HIST3H2A

d Chromatin modifying enzymes(R) 1.55 × 10−4 HIST2H2BE, HIST1H2BH, HDAC10

FDR false discovery rate, R data from Reactome database, K data from KEGG database, B data from BioCarta database
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of IgAN [39]. Therefore, it might be speculated that the
apoptosis of monocytes induced by downregulation of
TNF contribute to IgAN progression.
CCL20 is a small cytokine that also involves in

immune regulation and inflammation [40]. Combination
of CCL20 with CCR6 (the CCL20 receptor) cause the
recruitment of leukocyte subsets, which finally promote
immune-mediated kidney damage [41]. Additionally,
CCL20 is one of the chemokines that take part in the
host response to pathogens invasions by activating
inflammatory cells, and it has the similar effects on
monocytes [42]. Therefore, the downregulated CCL20 in
monocytes of IgAN patients might cause alteration in
immune response, and thereby influence the IgAN
development.
Three novel genes, protein kinase, CAMP-dependent,

catalytic, alpha (PRKACA), formyl peptide receptor 2
(FPR2) and histone deacetylase 10 (HDAC10) were firstly
predicted in monocytes of IgAN. PRKACA protein
encoded by PRKACA gene is one subunit of protein kin-
ase A that participates in apoptosis. At present,
PRKACA amplification is served as a method for identi-
fying genetic defect correlated with Cushing’s syndrome
[43]. Somatic mutations of PRKACA have been detected
in adenomas of the adrenal cortex [44]. Moreover,
PRKACA mediates apoptosis-related signaling pathways
in many cancer diseases, such as breast cancer and fol-
licular thyroid cancer cells [45, 46]. In the present study,
PRKACA was up-regulated and significantly enriched in
apoptosis pathway, suggesting it might exert its function
in monocytes via regulating apoptosis during IgAN pro-
gression. FPR2 is known to activate the G-protein
coupled receptor and N-formyl peptide receptor. FPR2
is found in adipose tissues as a receptor for the
pro-resolving mediators [47], which contribute to the
restoration of in adipose inflammation and treatment of
obesity-related glomerulopathy [48]. HDAC10, contain-
ing two catalytic sites, is highly expressed in numerous
human tissues such as kidney [49]. In lung cancer, de-
creased HDAC10 is associated with the advanced stage
and adverse outcome [50]. However, there are rare re-
ports on the relationship of IgAN and HDAC10. In the
current study, FPR2 and HDAC10 were hub
up-regulated genes in both PPI network and FI network,
implying they might co-function in monocytes of IgAN
patients. One limitation of this study is the lack of ex-
pression validation. However, we will do more experi-
ments to verify our conclusions once we collect the
samples in the future.

Conclusions
In conclusion, several crucial genes were identified in
monocytes of IgAN patients, such as IL6, TNF, IL1B,
CCL20, PRKACA, FPR2 and HDAC10. They might have

co-functions and their dysregulations might alter activ-
ities of pathways such as TLR and apoptosis signaling,
which might finally promote IgAN progression. The
study is of great value for the prediction of key regula-
tors in monocytes of IgAN and the identification of tar-
geting therapeutic management for IgAN.
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