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Abstract

Background: Vitamin D deficiency is common in patients with chronic kidney disease (CKD), and is associated with
endothelial dysfunction and cardiovascular disease. We performed a meta-analysis to assess the effect of vitamin D
treatment on flow mediated vasodilation (FMD) in CKD patients.

Methods: PubMed/Medline, Web of Science, Embase and Cochrane trials and reviews were searched systematically
for randomized controlled trials (RCT:s) using any vitamin D compound, at any stage of CKD, with FMD as outcome.
Fixed and random effects models were performed using the standardized mean difference effect size post
treatment for each trial. Heterogeneity was assessed by I2 statistics.

Results: 4 trials were included, comprising 305 patients. One used both 1 and 2 μg for two intervention groups
and was therefore split in two during the analysis. Patients in the included trials had a mean age of 44–65 years
and were all in CKD 3 to 4. One study used cholecalciferol, the others all used paricalcitol as treatment. Study
duration was 12–16 weeks. Intervention with vitamin D was associated with ameliorated FMD (STANDmean ES 0.78,
95% CI 0.55–1.01) in a fixed model. Heterogeneity was substantial (I2 = 84%). Secondary analysis with random
model analysis also showed significant results.

Conclusions: Short term intervention with vitamin D is associated with improvements in endothelial function, as
measured by FMD. This indicates positive effects of vitamin D on vascular disease in CKD. Limitations of this meta-
analysis are the small number of studies performed, and the short duration of intervention.
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Background
Chronic kidney disease (CKD) is a worldwide health issue,
affecting 10–15% of the population with high costs both
for patients and society [1, 2]. The main reasons for death
is not, however, end stage renal disease, but more often
cardiovascular events [2, 3]. The acknowledgement of kid-
ney dysfunction as a strong risk factor for cardiovascular
(CV) disease is highlighted in the European Society of
Cardiology (ESC) [4] and the Kidney Disease Improving
Global Outcome (KDIGO) guidelines [5]. Even so, treat-
ment options to affect outcome are few, and evidence of
these on cardiovascular hard end points are sparse.

Most CKD patients suffer a pronounced vascular dis-
ease, with endothelial dysfunction from early stages [6],
and later on a marked vascular stiffening and arterial
calcification [1, 3]. The reasons are multifactorial though
with emphasis on chronic inflammation and distur-
bances in the hormonal mineral bone disorder (MBD)
axis, with vitamin D deficiency, secondary hyperpar-
athyreoidism (hPTH), high phosphate, and FGF-23 levels
and downregulation of Klotho [1–3] [7].
Vitamin D has been shown to have anti-inflammatory

and anti-oxidative properties ([8]). Vitamin D also
down-regulates the expression of renin and has therefore
gained interest as a possible treatment option in CKD [9,
10]. Meta-analyses from the last decade show that vitamin
D affects residual albuminuria/proteinuria, on top of RAAS
blockade [11–14] probably due to anti-inflammatory
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effects, such as downregulation of the TGF-beta pathway
[13], downregulation of renin expressing genes [9, 10], and
based on synergy with the AT1-receptor [15]. Glucose
metabolism is another interesting area, where one
meta-analysis shows positive effect on glucose control by
treatment [16].
There has been some concern that active vitamin D

compounds might cause a deterioration of renal func-
tion. Zhang et al. [17] performed a meta-analysis that
showed higher creatinine levels with treatment, but no
effect on eGFR when measured without creatinine, inter-
preted as no real effect on eGFR but probably higher
creatinine due to an altered creatinine metabolism with
active compounds [12]. These results are in line with
other meta-analyses investigating the same area [12, 14].
Meta-analyses on cardiovascular risk and mortality

show effect of treatment with vitamin D in CKD patients
in observational studies [18, 19]. One meta-analysis [20]
investigated the effect on cardiovascular endpoints in
controlled trials, but could not show any benefit of treat-
ment. These results may be questioned however, since
none of the included studies had these endpoints as à
priori primary or secondary endpoints, and the study
durations varied from 3 weeks to 2 years.
There is a lack of interventional studies of vitamin D

in CKD with sufficient power to answer questions on
hard endpoints. In the absence of hard endpoints, surro-
gate markers of cardiovascular risk have been used in
interventional trials, such as flow mediated vasodilation
(FMD) since endothelial dysfunction precedes manifest
vascular disease [21, 22]. In vitro data support the notion
of a direct effect of vitamin D on endothelial function,
with decreased oxidative stress and augmented levels of
eNOS [23–25]. This makes endothelial function mea-
sured by FMD an interesting topic for a meta-analysis in
the small, short duration studies performed in the area.

Methods
Study inclusion criteria.
This meta-analysis was made in accordance with the
PRISMA guidelines and checklist. We included random-
ized controlled trials using a placebo or no treatment
group as control. The population was restricted to CKD
patients, in any stage of the disease, with or without dia-
betes mellitus. Intervention was considered treatment or
supplementation with any vitamin D compound. Out-
come was limited to FMD. Exclusion criteria were com-
bined vitamin D and calcium treatment, or comparison to
other vitamin D compounds (active versus precursor) or
to calcimimetics, without a non-treatment control group.

Data sources and searches
Together with two librarians specialized in data base
searches, we performed a systematic search of available

literature. To avoid too many negative results the search
was set between year 2000 and 2018-03-22, since the car-
diovascular protective effects of vitamin D were not inves-
tigated before that time. PubMed/Medline, Embase and
Web of Science (WoS) as well as Cochrane reviews and
Cochrane trials were searched in a systematic way. We
used the MeSH-term for vitamin D as well as kidney dis-
ease and then all terms listed beneath, words from entry
terms, and words found in relevant abstracts. Words used
were checked against abstracts to make sure they were
relevant. Search results were restricted to controlled trials
and to the English language. Conference abstracts were in-
cluded in the search. A full report of the search strategy,
including information on software and special features, is
available in the supplemental material.

Data extraction and methodological study quality
Data was extracted by two blinded investigators, in ac-
cordance with a standardized extraction form, including
terms as study length, number of participants, vitamin D
compound and dosage, age, CKD stage, and other treat-
ments (Table 1). There were too few studies to account
statistically for interrater reliability, but the extraction
forms were well matched and differences resolved by
discussion between the authors. Methodological study
quality was assessed by the Jadad Score [26], which give
1–5 points for blinding, randomization and the account
of all screened and included patients. There were no
remaining questions after data extraction. Therefore no
further contact with authors was needed.

Data synthesis and analysis
We used standardized mean difference effect size
(STANDmean ES) [27, 28] between treated patients and
placebo/no treatment patients post treatment to assess
the effect of vitamin D on FMD. We used the weighted
standard deviation (SD) [28], when SD was presented in
the article. In one case SD had to be estimated from
range as (max-min)/4. In one article neither the exact
value post treatment nor SD measures were presented in
the article or the supplemental material and we then
used the t-value, estimated from the p-value post treat-
ment as recommended [28, 29]. The effect size for each
study was calculated according to Hedges g [27, 28].
Standard error (SE) and 95% confidence interval (CI)
were computed for all studies. A positive effect size indi-
cated a result in favour of the treatment group.
Overall STANDmean ES for all included studies was

assessed with a fixed effects model. Studies were weighted
with the inverse variance weights technique giving more
weight to studies with larger populations to allow higher
impact to studies that yield a more precise estimate [27].
SE and 95% CI were calculated for the overall ES.
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We also performed a random effects model, according
to the DerSimonian and Laird estimate [27].
We computed correlations of effect sizes and study

populations and funnel plots to investigate publication
bias [27, 28].
To assess heterogeneity we calculated I2 statistics where

< 50% was considered as minimal heterogeneity, 50–75% as
moderate and > 75% as substantial heterogeneity [30, 31].

Results
Study selection
The screening and selection of articles was performed by
two blinded investigators (author 1 and 4), and disagree-
ments were resolved by discussion with the other au-
thors. There were no remaining disagreements after the
selection process. A total of 1744 articles were found
searching the databases. After a first screening of title
and abstract 304 articles remained. Of these, 14 were se-
lected for full review. Four studies met the full inclusion
criteria (Fig. 1). After discussion with all authors, one
study was divided into two treatment groups, with 1 and
2 μg of paricalcitol, using the same placebo group as
control. The 1 and 2 μg groups were regarded separately,
thus resulting in 5 studies used in the meta-analysis. We
did not find any conference abstract without a published
article that was of relevance for our research question.

Study characteristics
Study characteristics are presented in Table 1. Study size
varied from 24 to 120 participants, and study duration
from 12 to 16 weeks. Four studies examined the effects

of treatment with paricalcitol in doses of 1 or 2 μg, and
one study used cholecalciferol administered in two oral
doses of 300,000 IU at baseline and after 8 weeks. Mean
age was 59.9 years (mean) ranging from mean/median
values of 44–65 years. All patients were in CKD stage
3–4.

Quality assessment and risk of bias
The Cochrane Handbook 5–1 and the Jadad score were
used to assess quality and risk of bias. Sequence gener-
ation, allocation sequence concealment, and risk of in-
complete outcome data were assessed by the Jadad
score. The 5 included studies had Jadad scores of 3–5,
indicating median to high quality and an overall low risk
of biased data. Selective outcome reporting was assessed
during the screening and selection process, since we
only used one outcome in the final analysis. None of the
found studies reported FMD in the methodological sec-
tion, but not in the results section. This together with
our specified outcome indicate a low risk of selective
outcome reporting.
Publication bias was assessed by rank correlation and

by visual inspection of a funnel plot, and these results
did not indicate publication bias. We also searched
ClinicalTrials.gov without finding any unpublished
material of interest for our inclusion criteria.

FMD outcome
Five studies with a total number of 305 patients were
evaluated. There was no difference between the inter-
vention group and the placebo group in measures of

Table 1 Characteristics of included studies

Author Zoccali (− 14) Lundwall 2 μg (− 15) Lundwall 1 μg (− 15) Theti (− 15) Kumar (− 17)

Country Italy Sweden Sweden USA India

Duration 12 w 12 w 12 w 12 w 16 w

Sample size (nr) 89, analysis on 88 24, ITT 24, ITT 60, 55 completed,
analysis on 46

120, analysis on 117

CKD stage 3–4 3–4 3–4 3–4 3–4

Treatment paricalcitol paricalcitol paricalcitol paricalcitol Cholecalciferol

Dose 2 μg daily 2 μg daily 1 μg daily 1 μg daily 300.000 IU at baseline
and after 8 week

Baseline 25 (OH)
D(nmol/l)

35.5 65.1 66.7 1.25-OHD: 34.5 (pg/ml) 33.2

Age (mean) 62.5 65.0 68.6 62.5 (median) 44.2

ACEi/ARB (%) N/A 80.6 80.6 69.1 67.5

Jadad score 4 4 4 3 5

Underlying
condition/DM

N/A Non-diabetic patients Non-diabetic patients Diabetic nephropathy Non-diabetic patients

Outcome FMD FMD,PWV,echo,iontophoresis,
microcirculation

FMD,PWV,echo,iontophoresis,
microcirculation

FMD FMD,PWV

ITT intention to treat, ACEi angiotensin converting enzyme inhibitor, ARB angiotensin receptor blocker, FMD flow mediated vasodilation, PWV pulse wave velocity,
Echo echocardiography
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FMD at baseline in any study. Fixed effects model ana-
lysis of these studies indicated an overall effect of vita-
min D treatment on FMD measures (STANDmean ES
0.78, 95% CI 0.55–1.01) (Fig. 2). Random effects model
also showed a positive effect of treatment (STANDmean
ES 0.67 95% CI 0.06–1.29). The heterogeneity across the
included studies according to I2 statistics was substantial
for the fixed model (I2 = 84%), but minimal for the ran-
dom model (I2 = 0%). The number of studies was too
few to perform a meta-regression to investigate the het-
erogeneity in the fixed model.

Discussion
This meta-analysis of existing publications on interven-
tion with vitamin D on measures of FMD shows signifi-
cant effect on endothelial function, an important factor
in vascular disease. Two studies using FMD as outcome
were not included due to the lack of a control group.
Chitalia et al. [23] showed positive effects using Chole-
calciferol 300,000 IU, given as two doses at the begin-
ning and at 8 weeks, in a 16 week duration trial.

Kendrick et al. [32] compared cholecalciferol 2000 IU
with calcitriol 0.5 μg daily for 6 months and did not de-
tect any change in FMD.
There is a lack of interventional vitamin D studies with

enough power to investigate hard endpoints. Instead, sur-
rogate markers of cardiovascular risk have been used, such
as pulse wave velocity and pulse wave-form analysis
(PWV/PWA) and flow mediated vasodilatation (FMD)
[21, 22, 33, 34]. Whereas PWV/PWA are complex mea-
sures of both beta-2 induced vasodilation [34], arterial
stiffening and calcification [3], FMD is primarily a meas-
ure of the capacity of the endothelial cells to produce Nitic
Oxide (NO) [35]. Since FMD is a measure of function and
not structure, it is an earlier sign of vascular disease, and
likely easier to affect by shorter duration of treatment.
Even so, PWV and FMD are interrelated [36] and both are
predictors of cardiovascular risk [6, 22, 33, 34, 37].
There seem to be a discrepancy between the results

for PWV/PWA and FMD after treatment with vitamin
D compounds to CKD patients. The reasons are prob-
ably many, but one important factor might be, that

Fig. 1 Flow diagram of the selection process
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PWV/PWA is also a measure of arterial remodelling. Al-
though probably due to inflammation in the first place
[7], when established the structural changes in the vas-
culature are likely harder to affect and reverse. CKD pa-
tients have an accelerated remodelling with fibrosis and
calcification [1, 3], and concerns have been raised [7]
that we may intervene too late in the process in our at-
tempts to ameliorate CKD associated vascular disease.
For these reasons we chose to use FMD as the only

outcome. It is a more direct measure of NO availability,
with clear antioxidant, anti-inflammatory and eNOS up-
regulating pathways for vitamin D actions [23–25].
We found 14 studies measuring the effect of vitamin

D on different aspects of vascular function in CKD. Of
these, 10 studied the effect on PWV and or PWAix with
26–120 participants, duration of 8 to 44 weeks, with
CKD stage 3–5 and various vitamin D compounds and
doses. Three studies reported positive effects on PWV
[38–40], the rest did not detect any change after treat-
ment. Two articles [41, 42] assessed iontophoresis by
acetylcholine showing ameliorated microvascular func-
tion with treatment, though interpreted with caution
due to the small number of patients and short duration.
One study investigated reactive hyperaemia index, with
no significant change in treated patients [43].
We chose a fixed model statistical analysis as our pri-

mary model. The reason was the few and small studies
performed, which makes the results hard to generalize
and thus indicated the use of a fixed model [27]. Even
so, the random model performed as a secondary analysis

also showed significant results of vitamin D intervention
on FMD, which may allow generalization of our results.
There was, not surprisingly, a substantial heterogeneity

in the fixed model. There were too few studies to perform
a meta-regression of significant cofactors, but when the
studies were inspected for clinical heterogeneity there
were some important differences. The largest study [38]
had the strongest effect size and the youngest population,
originating from India, while the other populations were
from western countries. In this study cholecalciferol was
used as treatment in comparison with paricalcitol 1 to
2 μg in the other studies. This study also had the longest
duration (16 weeks), and the highest Jadad score (5p).
There was also a difference in baseline 25OH-vitamin D
with significantly lower levels in the two studies with the
strongest effect sizes [38, 44]. Theti et al. [45], who failed
to show significant results, included only patients with
diabetic nephropathy, in contrast to Kumar et al. [38] and
Lundwall et al. [42] who excluded diabetics.
Even though the number of studies were too few for

subgroup analyses, it is interesting to discuss the fact
that the two studies that did not show positive effect of
treatment with paricalcitol both used 1 μg [42, 45], in
comparison with the others using 2 μg. One of them,
Theti et al., [45] was also the only one investigating the
effects on diabetic nephropathy. Highly interesting is
also the fact that the study with the strongest effect size
[38], used inactive treatment with cholecalciferol, to pa-
tients substantially younger than in the other studies,
but in the same CKD stage (3–4).

Fig. 2 Forest plot of standardized effect size post intervention. A positive value indicates ameliorated FMD response in treated patients

Lundwall et al. BMC Nephrology  (2018) 19:247 Page 5 of 7



Of note, there seem to be a tendency to less negative
effects on calcium and phosphate metabolism with treat-
ments using precursors of vitamin D [11–14, 46]. This
might be favourable in treating vascular disease, and is
also supported by a study of Zoccali et al. [47]. They
saw, in a sub-study of the PENNY trial [44], that the ef-
fect of paricalcitol on FMD was most pronounced in pa-
tients with no change in phosphate during the study,
and abolished in patients with the highest rise in phos-
phate levels, indicating the importance of different as-
pects of CKD mineral and bone disorders. These results
might imply the use of phosphate binders in combin-
ation with active vitamin D.

Conclusion
Even though our results are hard to generalize due to the
small number of studies and patients included, we show
favourable effects in both the fixed and the random model,
suggesting benefits of vitamin D intervention on endothe-
lial function. Our results also indicate that the highest im-
pact is seen in younger patients, probably due to an earlier
stage of disease, where vascular remodelling has not yet
been established. It might also be more favourable with
the precursor than with active treatment, especially since
there seemed to be a need of high doses of active com-
pounds for effects. This is possibly due to less increased
calcium and phosphate levels with inactive treatment.
There is still a great need for larger and longer studies on
this topic, to a proper selection of CKD patients at earlier
stages of their vascular disease, and with sufficient power
to assess hard endpoints.
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