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Fructose increases risk for kidney stones:
potential role in metabolic syndrome and
heat stress
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Abstract

Background: Fructose intake, mainly as table sugar or high fructose corn syrup, has increased in recent decades
and is associated with increased risk for kidney stones. We hypothesized that fructose intake alters serum and urinary
components involved in stone formation.

Methods: We analyzed a previously published randomized controlled study that included 33 healthy male adults
(40-65 years of age) who ingested 200 g of fructose (supplied in a 2-L volume of 10% fructose in water) daily for
2 weeks. Participants were evaluated at the Unit of Nephrology of the Mateo Orfila Hospital in Menorca. Changes
in serum levels of magnesium, calcium, uric acid, phosphorus, vitamin D, and intact PTH levels were evaluated.
Urine magnesium, calcium, uric acid, phosphorus, citrate, oxalate, sodium, potassium, as well as urinary pH, were
measured.

Results: Ingestion of fructose was associated with an increased serum level of uric acid (p < 0.001), a decrease in

serum ionized calcium (p =0.003) with a mild increase in PTH (p < 0.05) and a drop in urinary pH (p =0.02), an
increase in urine oxalate (p=0.016) and decrease in urinary magnesium (p = 0.003).

Conclusions: Fructose appears to increase urinary stone formation in part via effects on urate metabolism and
urinary pH, and also via effects on oxalate. Fructose may be a contributing factor for the development of kidney
stones in subjects with metabolic syndrome and those suffering from heat stress.

Trial registration: ClinicalTrials.gov NCT00639756 March 20, 2008.
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Introduction

The lifetime risk of having a kidney stone has doubled in
US adults during the last 40 years, and affects 8.8% of
the US population [1, 2]. Two major reasons may account
for the rise in kidney stones, with the first being the rise in
obesity, metabolic syndrome, diabetes and hypertension,
all of which increase the risk for kidney stones [3—8]. The
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second reason appears to be climate change [9]. Kidney
stones are increased in hot environments [10] such as
the southern United States (‘the stone belt’) [9]. While
mean temperatures have increased by 0.8 to 1 °C in the
last 75 years, the frequency of heat extremes has increased
markedly [11, 12] and is coupled with increasing water
shortages throughout the world [13]. Increasing heat places
individuals who work outside at increased risk for heat
stress and heat stroke [14, 15], as well as kidney stones and
possibly chronic kidney disease (CKD) [9, 16, 17].

Studies on the urine of subjects with metabolic syn-
drome/obesity and subjects under heat stress, show similar
risk patterns for nephrolithiasis. Subjects with metabolic
syndrome have a urinary pattern that is characterized by
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low urinary pH, high serum uric acid, and normal or
elevated urinary uric acid [18] which is similar to those
exposed to heat stress [19], and both groups also show
increased frequency of uric acid stones compared to
the general population [19, 20]. Diabetic subjects also
show a higher frequency of uricosuria and risk for uric
acid kidney stones [8].

In searching for potential common risk factors for
these two conditions, fructose jumps out as a possibility.
Fructose is a simple sugar present in the two most com-
mon added sweeteners, sucrose (a fructose-glucose di-
saccharide) and high fructose corn syrup (HFCS), which
is a mixture of fructose and glucose monosaccharides.
Intake of fructose-containing sugars is epidemiologically
and experimentally linked with the epidemics of obesity,
metabolic syndrome and diabetes [21, 22]. Fructose is
also generated in the kidney and hypothalamus under
conditions of heat stress or dehydration due to the in-
duction of aldose reductase, which converts glucose to
sorbitol, followed by reaction with sorbitol dehydrogenase
to generate fructose [23-25].

Epidemiological studies have linked dietary fructose
[26] and sucrose [27] with an increased risk for kidney
stones, despite the fact that natural fruits and some sodas
are thought to be protective by providing citric acid (which
generates citrate, an inhibitor of calcium-forming stones).
Indeed, when one considers that fluid intake is a major
strategy for reducing kidney stones [28], it is striking that
the intake of sugary (fructose-containing) colas dose de-
pendently increases the risk for stones, whereas intake of
artificially sweetened colas shows an opposite relationship
[29]. Indeed, the relationship between low fluid intake and
kidney stones is present when the fluid intake is water, but
not for soft drinks [29, 30]. Furthermore, a randomized trial
reported a 10% reduction in stone recurrence for those
who could reduce soft drink intake to < 24 oz/week [31].

While fructose intake increases the risk for kidney
stones, the exact mechanism by which it does this is not
known [32]. In this regard, a few years ago we performed
a clinical trial in which healthy adult men were adminis-
tered fructose with or without allopurinol for two weeks
[33]. This allowed us to test the hypothesis that fructose
might alter urinary constituents to favor calcium or uric
acid stone formation.

Methods

Study design

The study was approved by the Ethics Committee of the
Illes Balears Community (CEIC-IB; resolution: IP IB-850/07)
and was registered on ClinicalTrials.gov [NCT00639756].
Participants were healthy nonsmoking males between the
age of 40 and 65. Exclusion criteria included hypertension
requiring the use of antihypertensive agents, diabetes melli-
tus, thyroid disease, any history of cardiovascular disease,
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gout, or cancer. In addition, any subject with an allopurinol
allergy, a psychiatric disorder, who took lipid-lowering drugs,
who was an alcoholic, who used illicit drugs, or who
had a history of intolerance to fructose, was excluded.
In order to reach a goal of 80 to 100 subjects, 293 indi-
viduals were interviewed, of whom 83 met the inclusion
criteria and signed informed consent. Nine participants
did not complete the study because of abdominal dis-
comfort and diarrhea induced by fructose ingestion.
Seven additional subjects were removed due to a history of
kidney stones. Thirty-three were randomized (using a num-
ber system) to receive fructose (age 50.27 +/-8.15, BMI
28.94 +/-3.86), while the other thirty-four received fruc-
tose and allopurinol. The investigators were blinded at the
time of allocation. As the two groups did not randomize
evenly, we are presenting only the fructose alone group in
this paper.

All subjects ingested 200 g of fructose daily, supplied
in two bottles, each of 1 L capacity, containing 10% (w/v)
fructose in water. Adherence to the study protocol was
verified by collecting empty containers at each visit. Dur-
ing the study, subjects were asked to consume their usual
diet, avoiding sugary drinks or alcohol.

Sample preparation and analysis

A blood sample, a first-morning urine sample, and a
24-h urine sample were collected both before the study
began and after the test concluded. The 24-h urine was
collected according to the guidelines of the National
Committee for Clinical Laboratory Standards (NCCLS);
urine was preserved by addition of Thymol in isopropanol
and refrigeration at 4 °C during the 24 h of collection.
Blood and urine samples were processed immediately after
collection.

Laboratory analysis

Serum levels of glucose, uric acid, urea, creatinine, calcium,
ionized calcium, magnesium, phosphorus, sodium, and po-
tassium were measured in the Mateu Orfila Hospital labora-
tory using the Architect C-8000 Autoanalyzer from Abbott
Diagnostics. Analysis of 24-h urine included measurement
of urinary volume, urinary pH, and creatinine, urea, uric
acid, phosphorus, sodium, potassium, oxalate and citrate.
All analyses employed standard methods. To determine cal-
cium and magnesium, urine samples were acidified with
hydrochloric acid. Urine oxalic acid was measured at pH 3.8
(which captures both soluble and insoluble oxalate) whereas
for urine uric acid, determination was done at pH 7.8 (which
solubilizes any crystalline urate present). Urinary pH was
measured using a micropH 2002 Crison pH-meter.

Statistical analysis
Results are presented as means + standard deviation.
We utilized paired t-tests to determine the difference in
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study parameters from baseline to follow up. A type-I error
probability of 0.05 was utilized as a threshold for statistical
significance for each analysis. Analyses were conducted
utilizing the SPSS Statistics software (IBM SPSS Statistics
version 22 for Windows; IBM, New York, USA).

Results

The baseline and followup serum and urine chemistry
results of the 33 subjects who received fructose are
shown in Table 1. Ten of these subjects had mild ab-
dominal symptoms consisting of bloating, flatulence or
limited episodes of diarrhea that were considered to be
minor side effects. Fructose administration resulted in a
rise in fasting serum uric acid levels (» <0.001) and a
slight but significant reduction in ionized calcium (p =
0.003) with a mild rise in intact parathyroid hormone
(PTH) (p = 0.04). The primary effect of fructose on urinary
parameters was to reduce urinary pH (p <0.02), increase
urine oxalate (p =0.016), and reduce urine magnesium
(p =0.003). There was also an approximately 15% re-
duction in urine citrate and nearly 10% reduction in
urinary phosphorus, as well as a 10% increase in urinary
uric acid, but the differences did not reach significance.

Discussion

Fructose and sucrose intake increase the risk for kidney
stones [26, 27], but the mechanisms are not well under-
stood [32]. Here we evaluated the effects of high doses

Table 1 Characteristics of Subjects
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of fructose (200 g/d, equivalent to a 6 pack of 20 oz
colas) to mostly overweight adult males for two weeks.
The primary effect of fructose on the plasma was an
increase in serum uric acid, as previously noted [33]. In
addition, there was a statistically significant but mild de-
crease in ionized calcium with an increase in PTH levels.
The primary effect of fructose on the urine consisted of
a significant reduction in urinary pH. In addition, there
were statistically significant decreases in urinary sodium,
potassium, and magnesium.

Uric acid

Fructose generates uric acid during its metabolism, and
serum urate [34—36] and urinary uric acid [37] increase
acutely following fructose ingestion [34—36], especially
during the postprandial period [38]. A high fructose in-
take is associated with higher serum uric acid levels and
an increased risk for gout [39-41]. In our study there
was a significant increase in serum uric acid, but while
urinary uric acid was approximately 10% higher, it did
not reach significance.

Subjects with metabolic syndrome and/or gout typically
have a low fractional excretion of uric acid [42]. While
urine uric acid levels are often in the normal range in
these individuals, a purine load results in a rapid increase
in uricosuria [43]. Likewise, fructose intake may also result
in transient uricosuria related to acute rises in serum and
urine uric acid following fructose metabolism [38]. Acute

Baseline Followup Change P value
Serum
Calcium ionized (mmol/L) 1.248 + 0.051 1231 + 0.047 -0.017 £ 0.030 0.003
25(0OH) Vit D3 (ng/mL) 40.88 + 17.80 37.03 £ 1413 -385+ 1575 0.17
Intact PTH (pg/mL) 4594 + 18.09 5242 £ 2632 647 £17.58 0.042
Magnesium (mmol/L) 0914 + 0.073 0.909 + 0.080 —0.005 £ 0.063 0.68
Phosphorous (mg/dL) 322 + 047 328 + 052 0.06 + 0.38 035
Urate (mg/dL) 511+ 137 6.13 £ 142 1.01 £ 0.75 <0.001
Urine

Urine Volume (mL/24 h) 1765 + 659 2156 + 737 391 + 698 0.003
Urine pH 578 £0.76 552+ 063 -0.26 £ 0.61 0.019
Calcium excretion (mg/24 h) 239 £ 129 214 +£ 104 -25+90 012
Magnesium excretion (mg/24 h) 92.1 £ 363 705 £ 356 -216 £ 37 0.01
Phosphorus excretion (mg/24 h) 965 + 349 878 + 330 —88 + 319 0.12
Oxalate excretion (mg/24 h) 265 + 181 376 + 34.1 11.1£250 0.016
Urate excretion (mg/24 h) 659 + 269 724 £+ 301 65 + 246 0.14
Citrate excretion (mg/24 h) 760 + 444 645 + 311 —105 + 462 0.16
Creatinine excretion (mg/24 h) 1700 + 409 1766 + 417 66 + 317 0.24
Potassium excretion (mEg/24 h) 783 £315 716 £ 209 —6.7 + 275 0.17
Sodium (mEqg/24 h) 1995+ 774 187.8 + 835 -117£819 042




Johnson et al. BMIC Nephrology (2018) 19:315

heat stress also causes transient rises in serum and urinary
uric acid levels, in association with the development of
urate crystalluria [19, 44, 45]. Thus, while a high urinary
uric acid may not be commonly observed in subjects with
metabolic syndrome and kidney stones, it may well be
because 24 h measurements likely include periods of post-
prandial periods where urinary levels could be high vary-
ing with fasting periods where urinary urate levels fall
back into the normal range.

Low urine pH

Fructose ingestion was associated with a significant
decrease in urine pH. Fructose metabolism is known
to generate lactic acid, thereby providing an increase
in acid load to the kidney [46]. However, another
mechanism might be an impairment in ammoniagenesis, as
has been shown to occur in metabolic syndrome [47, 48].
Ammoniagenesis occurs primarily in the proximal tubule,
which is the major site where fructose is metabolized. Prox-
imal tubular injury can be demonstrated in rats fed fructose
[49] and also in mice that metabolize endogenously pro-
duced fructose from heat stress [23]. Hence it is possible
that the low urine pH is the consequence of increase acid
load (lactate) with an impaired ammoniagenesis response
related to proximal tubular dysfunction.

Serum calcium and PTH axis

We also found a small decrease in serum calcium, consist-
ent with the observation that fructose can impair calcium
absorption in the intestine [50]. This was associated with a
small rise in PTH levels. Interestingly, we reported an
association of serum uric acid with elevated PTH, and also
found that uric acid can inhibit 1-alpha hydroxylase that
converts 25 hydroxy vitamin D to 1,25 vitamin D [51]. In
our study we did not measure 1,25 vitamin D; but the
data, even though mild, would be consistent with an effect
of fructose on this pathway. Nevertheless, the clinical
significance of these findings can be questioned, as the
changes in calcium and PTH were quite mild.

Increased urinary oxalate

We also observed higher urinary oxalate excretion in
subjects given fructose. The mechanism is likely a conse-
quence of the increased glyoxylate synthesis that has
been reported with increased fructose consumption [52].
Fructose has also been shown to increase oxalate synthe-
sis in cultured rat hepatocytes [53]. In a study of seven
healthy individuals, intravenous infusion of 35 g of fruc-
tose increased urinary oxalate excretion by 60% com-
pared to glucose infusion [54]. On the other hand, these
same authors found a decrease in urinary oxalate follow-
ing oral fructose administration [55]. In our study, which
used higher doses of oral fructose, and there was a clear
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increase in urinary oxalate excretion that would be con-
sistent with its known ability to increase glyoxylate.

Reduced urinary citrate

We also observed a 15% reduction in urinary citrate
excretion which did not reach significance. Urinary cit-
rate levels are mainly determined by the rate of proximal
tubular citrate reabsorption and metabolism [56]. One
key mechanism for hypocitraturia is increased intracellular
citrate utilization by activation of adenosine triphosphate
(ATP) citrate lyase (ACL) in the proximal tubule [57].
Both fructose and uric acid increase ACL activity in hepa-
tocytes [58]. Since circulating fructose is rapidly filtered
and reabsorbed via Glut5 and Glut 2 present in the prox-
imal tubular brush border membrane [49], it is possible
fructose could be increasing the synthesis of renal ACL
activity directly. In addition, renal tubular ACL is activated
by chronic metabolic acidosis and potassium deficiency
[57], and hence the decrease in urinary pH and decrease
in potassium excretion observed in our patients might
also be increasing ACL via that mechanism.

Other changes

Fructose intake was associated with a nonsignificant
decrease in phosphate excretion. Fructose is known to
induce intracellular phosphate depletion due to the
rapid phosphorylation of fructose, and we did observe a fall
in urinary phosphate which could represent movement of
serum phosphate into the liver or other organs. Finally,
there were mild decreases in urinary magnesium. Magne-
sium is known to decrease the risk of stone formation by
reducing absorption of oxalate or by forming soluble com-
plexes with oxalate in urine [59, 60]. A reduction in urinary
magnesium could be consistent with a state of mild magne-
sium depletion, possibly related to the rapid decrease in
ATP levels that occurs in the liver during fructose metabol-
ism [61]. A decrease in urinary magnesium could also pre-
dispose to kidney stones.

Limitations

A limitation is that the amount of fructose administered
was high and may not reflect the effects of fructose for
the average person. However, sugar intake averages 13 to
15% of energy intake in the general population and in
some groups, such as adolescent males, may approach
25% or more. Second, fructose was administered as a 2 |
fluid and hence we relied on 24 h urinary excretion as
opposed to urinary concentration to examine effects. An-
other limitation is that the amount of fructose ingested
could have affected intake of other foods that could poten-
tially explain some of the findings. The response of fruc-
tose could also vary depending on whether the subject is
predisposed to calcium oxalate or uric acid stones. Some
findings could potentially be subject to results of multiple
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testing and will need to be confirmed in future studies. A
final limitation is that all subjects were adult men and
hence our data may not be generalized to women.

Conclusions

The finding that fructose can directly increase the risk
for kidney stones by altering pH and urinary oxalate and
magnesium may help account for why soft drink consump-
tion predisposes to kidney stones. In addition, dietary fruc-
tose is also known to increase serum and urine osmolarity
and vasopressin release [25, 62—64]. Indeed, there is some
evidence that fructose tends to shift water intracellularly
(where it likely associates with glycogen) while maintaining
a high serum osmolarity [64]. Thus, it provides a mechan-
ism for maintaining a low urine output, which may increase
the risk for both kidney stones and acute kidney injury
from urate crystalluria [44, 45]. This likely accounts for why
the urine output only increased by approximately 400 cc
despite the large fluid intake associated with fructose. It is
interesting that low urine volumes [30, 65], low urine pH
[66, 67], high serum uric acid [68], soft drinks [69], and ele-
vated serum osmolarity [70] all predict the development of
CKD in addition to kidney stones, and that the epidemic of
kidney stones and CKD appear linked [71, 72]. It is possible
that the protective effects of bicarbonate in CKD are not
due to neutralization of metabolic acidosis as much as it is
the neutralization of the pH of the urine. We recommend
further studies investigating how alterations in urinary con-
stituents from fructose may influence both kidney stones
and CKD.
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