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Abstract

Background: Insulin resistance contributes to the metabolic syndrome, which is associated with the development
of kidney disease. However, it is unclear if insulin resistance independently contributes to an increased risk of
chronic kidney disease (CKD) progression or CKD complications. Additionally, predisposing factors responsible for
insulin resistance in the absence of diabetes in CKD are not well described. This study aimed to describe factors
associated with insulin resistance and characterize the relationship of insulin resistance to CKD progression,
cardiovascular events and death among a cohort of non-diabetics with CKD.

Methods: Data was utilized from Chronic Renal Insufficiency Cohort Study participants without diabetes (N = 1883).
Linear regression was used to assess associations with insulin resistance, defined using the Homeostasis Model
Assessment of Insulin Resistance (HOMA-IR). The relationship of HOMA-IR, fasting glucose, hemoglobin A1c (HbA1c),
and C-peptide with CKD progression, cardiovascular events, and all-cause mortality was examined with Cox
proportional hazards models.

Results: Novel positive associations with HOMA-IR included serum albumin, uric acid, and hemoglobin A1c. After
adjustment, HOMA-IR was not associated with CKD progression, cardiovascular events, or all-cause mortality. There
was a notable positive association of one standard deviation increase in HbA1c with the cardiovascular endpoint
(HR 1.16, 95% CI: 1.00–1.34).

Conclusion: We describe potential determinants of HOMA-IR among a cohort of non-diabetics with mild-moderate
CKD. HOMA-IR was not associated with renal or cardiovascular events, or all-cause mortality, which adds to the
growing literature describing an inconsistent relationship of insulin resistance with CKD-related outcomes.
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Background
Chronic kidney disease (CKD) affects up to 26 million
Americans, resulting in a disproportionate risk of
cardiovascular disease and end-stage renal disease
(ESRD) [1]. The strong association of CKD with
cardiovascular disease is explained only in part by
traditional risk factors, and it is hypothesized that
metabolic or inflammatory abnormalities associated
with progressive renal disease, such as insulin resist-
ance, confer an augmented risk of cardiovascular dis-
ease in CKD [2–5]. Insulin resistance is a pathological
state in which tissues have a decreased sensitivity to
insulin, leading to a compensatory rise in circulating
insulin to maintain normal blood glucose levels [6–9].
Increased levels of insulin have been reported to be
an important risk factor for the development of
atherosclerosis in the general population [10, 11].
Insulin resistance is present in the early stages of CKD

[12–15], and becomes more prevalent as CKD pro-
gresses [16]. However, the precise mechanisms of insulin
resistance in CKD remains poorly identified [8]. Further,
due to the exclusion of individuals with CKD in many
epidemiologic studies of insulin resistance, it is unclear
if insulin resistance alone contributes to an increased
risk of important clinical outcomes in CKD [17].
In this study, we examined factors associated with insu-

lin resistance in CKD and investigated the association of
insulin resistance, and markers of carbohydrate metabol-
ism, with subsequent CKD progression, atherosclerotic
cardiovascular events, and all-cause mortality among indi-
viduals with mild-moderate CKD without diabetes.

Methods
Study design and population
The Chronic Renal Insufficiency Cohort (CRIC) Study is a
prospective observational cohort study that enrolled a total
of 3939 men and women with CKD across the United
States between 2003 and 2008 at seven clinical centers
(Ann Arbor, Michigan; Baltimore, Maryland; Chicago,
Illinois; Cleveland, Ohio; New Orleans, Louisiana;
Philadelphia, Pennsylvania; and Oakland, California) with
age-specific estimated glomerular filtration rate (eGFR) cri-
teria ranging 20–70mL/min/1.73m2. Eligibility criteria have
been previously reported [18, 19]. Participants completed
annual clinic visits at which data were obtained, and blood
and urine specimens were collected. Diabetes mellitus was
defined as a fasting glucose > 7mmol/L, a non-fasting
glucose > 11.1mmol/L, or the use of insulin or other medi-
cations for glycemic control. Study participants without
diabetes at baseline and with a fasting blood draw were in-
cluded (N = 1883). The study protocol was approved by the
Institutional Review Board of all participating centers and is
in accordance with the Declaration of Helsinki. All partici-
pants provided written informed consent.

Exposures
The primary exposure was insulin resistance, using the
Homeostasis Model Assessment of Insulin Resistance
(HOMA-IR), estimated from fasting glucose and insulin
values from the baseline visit [20]. HOMA-IR is the
most commonly used static test of insulin sensitivity.
Additional measures were evaluated as secondary
exposures, including fasting glucose, hemoglobin A1c
(HbA1c), and C-peptide.

Outcomes and censoring events
The composite renal endpoint was defined as the devel-
opment of ESRD (dialysis initiation or kidney transplant-
ation) or halving of baseline eGFR. Estimated GFR was
calculated from serum creatinine and cystatin C using
the CRIC Study equation [21]. The composite athero-
sclerotic cardiovascular endpoint included the first
hospitalization for a myocardial infarction, a cerebrovas-
cular event, or peripheral arterial disease. Hospitaliza-
tions were ascertained through self-report and
adjudicated by study personnel. Deaths were ascertained
from reports of next of kin, death certificates, obituaries,
hospital records, and the Social Security Death Master
File. Follow-up was censored at time of death or loss to
follow-up. Outcomes were ascertained through 2015.

Covariates
All considered covariates were ascertained at the base-
line visit, which included age, sex, race, ethnicity, level of
education, systolic blood pressure (SBP), smoking status
(current vs. other), physical activity (minutes/week),
waist circumference (in centimeters), body mass index
(BMI, kg/m2), fat-free mass (FFM), self-reported history
of cardiovascular disease, statin use, other non-statin
lipid-lowering medication use, angiotensin-converting
enzyme inhibitor (ACEi) or angiotensin-receptor blocker
(ARB) use, eGFR, hemoglobin, high-density lipoprotein
(HDL) cholesterol, low-density lipoprotein (LDL) choles-
terol, triglycerides, high-sensitivity C-reactive protein
(hsCRP), uric acid, serum albumin, fibroblast growth
factor 23 (FGF-23), and 24-h proteinuria. Further details
of the data collection procedures are provided in the
supplement.

Statistical analysis
Baseline characteristics of study participants were
summarized overall and across quartiles of HOMA-IR
using frequencies for categorical variables, and either
mean (standard deviation [SD]) or median (interquartile
range [IQR]) for continuous variables, as appropriate.
Data were transformed if the distribution was skewed.
Differences in characteristics across HOMA-IR quartiles
were compared using analysis of variance, chi-square
test, and Kruskal Wallis test, as appropriate. Correlations
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between the main predictor (HOMA-IR) and measures
of carbohydrate metabolism (C-peptide, HbA1c, and
glucose) were explored with Pearson’s correlation coeffi-
cient, r. The association of HOMA-IR (using the trans-
formed version, log2-HOMA-IR) with factors reported
to be associated with insulin resistance in non-diabetics
with CKD, which include age, smoking status, SBP, BMI,
HDL, LDL, triglycerides, ACEi/ARB use, physical activ-
ity, hemoglobin, eGFR, hsCRP, waist circumference, and
FFM was assessed with multivariable adjusted linear
regression models controlled for race/ethnicity, sex,
clinical center, and education. An exploratory linear
regression further adjusted the model for: history of
cardiovascular disease, use of statins, use of non-statin
lipid-lowering medications, 24-h proteinuria, HbA1c,
uric acid, FGF-23, and serum albumin. Participants with
no missing data were included in the primary and
exploratory linear regression analyses (N = 1806 and
N = 1706, respectively).
Median follow-up time, total number of events, and

crude rates of the renal endpoint, cardiovascular end-
point, and all-cause death were calculated overall and by
quartiles of HOMA-IR. The association of HOMA-IR,
fasting glucose, HbA1c, and C-peptide with each of the
endpoints was examined using traditional Cox propor-
tional hazards models with sequential adjustment. Expo-
sures of interest were modeled per 1 SD increase. Model
1 adjusted for age, sex, race, ethnicity, education, and
clinical center. Model 2 adjusted for Model 1 covariates,
plus BMI, waist circumference, smoking status, SBP,
ACEi/ARB use, HDL, LDL, triglycerides, hsCRP, FFM,
eGFR, hemoglobin, and physical activity. Finally, Model
3 adjusted for Model 2 covariates with the addition of
statin use, use of non-statin lipid-lowering medications,
history of cardiovascular disease, 24-h proteinuria,
FGF-23, uric acid, and serum albumin. Hazard ratios
(HR) and 95% confidence intervals (95% CI) were
reported for all models. Analyses were restricted to cases
with full data (N = 1882 in Model 1, N = 1806 in Model 2,
and N = 1706 in Model 3).
We explored effect modification by an a priori

selected set of characteristics: race (Black vs. non-Black),
age (< 65 vs. ≥65 years), eGFR (< 45 vs. ≥45mL/min/
1.73m2), and proteinuria (< 0.2 vs. ≥0.2 g/day). In sensitiv-
ity analyses, Cox proportional hazards models of the
cardiovascular endpoint were repeated treating death as a
competing event, and the models of the cardiovascular
endpoint and all-cause mortality were repeated censoring
at ESRD. All analyses were performed using SAS® soft-
ware, version 9.4 (SAS Institute Inc., Cary, NC) [22].

Results
A total of 1883 CRIC Study participants did not have
diabetes at study entry. These participants had a mean

age of 56.5 years, a mean BMI of 30.3 kg/m2, and a mean
eGFR of 49mL/min/1.73m2. Mean values for
HOMA-IR, glucose, insulin, HbA1c, and C-peptide were
3.84, 5 mmol/L, 0.6 μg/L, 39 mmol/mol, and 3.0 μg/L,
respectively. Baseline characteristics are reported by
quartile of HOMA-IR in Table 1. (Due to the positively
skewed nature of the distribution of HOMA-IR values,
which causes Quartile 4 to contain a much wider range
of values than Quartiles 1–3, that quartile is divided in
two.) History of cardiovascular disease, BMI, waist
circumference, statin use, hsCRP, glucose, insulin,
HbA1c, and C-peptide all increased with the upper
quartiles of HOMA-IR. Notably, components of the
metabolic syndrome (central obesity as measured by
waist circumference, fasting glucose, triglycerides,
and HDL) trended as expected with increasing quar-
tiles of HOMA-IR. HOMA-IR was strongly correlated
with C-peptide (r = 0.78), moderately correlated with
glucose (r = 0.54), and weakly correlated with HbA1c
(r = 0.26).
Several baseline characteristics were significantly asso-

ciated with log2-HOMA-IR (Tables 2 and 3): age per
year (β = 0.005, p = 0.001), non-smoking vs. current
smoking (β = 0.13, p = 0.002), BMI per kg/m2 (β = 0.02,
p < 0.001), waist circumference per centimeter (β = 0.01,
p < 0.001), hemoglobin per mmol/L (β = 0.04, p < 0.001),
LDL per mmol/L (β = − 0.002 p < 0.001), HDL per
mmol/L (β = − 0.003, p = 0.001), triglycerides per mmol/
L (β = 0.30, p < 0.001), and hsCRP per nmol/L (β = 0.04,
p = 0.03). In the exploratory linear regression, the
following were found to be associated with HOMA-IR:
use of non-statin lipid lowering medications vs. non-use
(β = − 0.16, p = 0.03), serum albumin per g/L (β = 0.12, p =
0.001), HbA1c per mmol/mol (β = 0.2, p < 0.001), and uric
acid per umol/L (β =0.03, p = 0.001).
The median (IQR) duration of follow-up was 7.76

(3.40–10.26) years for the composite renal endpoint,
with 474 renal events (event rate 3.68 per 100
person-years), 9.43 (5.95–10.81) years for the composite
cardiovascular endpoint with 220 cardiovascular events
(event rate: 1.43 per 100 person-years), and 10.15 (9.74–
11.09) years for mortality with 379 deceased during
follow-up (event rate: 2.19 per 100 person-years; Table 4).
The assumption of proportionality was met in the fully
adjusted Cox models.
HOMA-IR was not significantly associated with CKD

progression, atherosclerotic cardiovascular events, or
all-cause mortality (Table 5). For each 1 SD higher in
HbA1c there was a 16% greater rate of the cardiovascu-
lar endpoint (HR 1.16, 95% CI: 1.00–1.34). The finding
was consistent in adjusted models censored at ESRD
(HR 1.25, 95% CI 1.06–1.47; Additional file 1 Table S1)
and when modeling death as a competing event (HR
1.18, 95% CI: 1.01–1.39; Additional file 1 Table S2). For
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Table 1 Baseline characteristics of Chronic Renal Insufficiency Cohort (CRIC) Study participants without diabetes at baseline overall
and by quartile of HOMA-IR

Quartile of HOMA-IR, mmol/L * μU/mL

Overall Quartile 1 Quartile 2 Quartile 3 Quartile 4a Quartile 4b P-value

(0.04–2.04) (2.05–3.02) (3.03–4.55) (4.56–6.20) (6.21–41.1)

N = 1883 N = 471 N = 471 N = 471 N = 235 N = 235

Demographic/Clinical variables

Age, years 56.5 (11.9) 54.2 (12.9) 56.9 (11.6) 57.7 (11.4) 57.2 (11.6) 57.2 (10.7) < 0.001

Male gender, % 1011 (54.0) 232 (49.3) 241 (51.2) 273 (58.0) 136 (57.9) 129 (54.9) 0.04

Race/ethnicity, % 0.03

Non-Hispanic white 939 (50.0) 258 (54.8) 231 (49.0) 244 (51.8) 104 (44.3) 102 (43.4)

Non-Hispanic black 724 (38.0) 155 (32.9) 174 (36.9) 181 (38.4) 103 (43.8) 111 (47.2)

Hispanic 144 (8.0) 38 (8.1) 42 (8.9) 31 (6.6) 17 (7.2) 16 (6.8)

Hypertension, % 1503 (80.0) 321 (68.2) 370 (78.6) 397 (84.3) 205 (87.2) 210 (89.4) < 0.001

Current smoking, % 258 (14.0) 82 (17.4) 65 (13.8) 45 (9.6) 36 (15.3) 30 (12.8) 0.01

Systolic blood pressure, mmHg 124 (20) 122 (21) 124 (21) 125 (20) 123 (19) 124 (18) 0.16

Diastolic blood pressure, mmHg 73 (13) 73 (13) 73 (13) 73 (12) 73 (13) 73 (13) 0.93

Heart rate, beats/min 67 (11) 65 (11) 66 (11) 67 (11) 67 (10) 69 (11) < 0.001

History of cardiovascular disease, % 452 (24) 81 (17) 110 (23) 126 (27) 64 (27) 71 (30) < 0.001

Education, %

Less than high school 268 (14) 57 (12.1) 72 (15.3) 74 (15.7) 28 (11.9) 37 (15.7) < 0.001

High school graduate 343 (18) 69 (14.7) 86 (18.3) 84 (18.5) 52 (22.1) 49 (20.9)

Some college 541 (29) 115 (24.5) 138 (29.3) 126 (26.8) 73 (31.1) 89 (37.9)

College graduate or higher 730 (39) 229 (48.7) 175 (37.2) 184 (39.1) 82 (34.9) 60 (25.5)

Anthropometric Variables

Height, m 1.7 (0.1) 1.7 (0.1) 1.7 (0.1) 1.7 (0.1) 1.7 (0.1) 1.7 (0.1) 0.006

Weight, kg 87 (21.7) 74.9 (16.5) 81.7 (17.4) 91.8 (20.3) 96.9 (21.2) 102.1 (25) < 0.001

Body mass index, kg/m2 30.3 (7.1) 26.4 (4.9) 28.8 (6.0) 31.7 (6.2) 33.4 (6.8) 35.8 (8.7) < 0.001

Waist circumference, cm 101.6 (16.3) 91.8 (13.8) 97.6 (13.0) 105.1 (13.7) 109.9 (15.2) 114.3 (17.6) < 0.001

Fat-free mass, kg 57.4 (14.5) 52.2 (12.6) 54.8 (12.8) 60.2 (15.2) 61.7 (14.5) 63.0 (15.2) < 0.001

Medication Use

Statins, % 778 (42) 132 (28.1) 201 (43.3) 223 (47.8) 108 (46) 114 (48.5) < 0.001

Other lipid-lowering
medication, %

855 (46) 146 (31.1) 219 (47.2) 244 (52.2) 121 (51.5) 125 (53.2) < 0.001

ACEi or ARB use, % 1092 (58%) 219 (46.7) 273 (58.8) 287 (61.5) 163 (69.4) 150 (63.8)

Laboratory Values

Fasting glucose, mmol/L 5 (0.6) 4.7 (0.6) 4.9 (0.5) 5.2 (0.6) 5.4 (0.6) 5.7 (0.6) < 0.001

Insulin, μg/L 0.6 (0.4–0.9) 0.4 (0.3–0.4) 0.5 (0.5–0.6) 0.8 (0.7–0.8) 1.0 (0.9–1.1) 1.6 (1.3–2.0) < 0.001

C-peptide, μg /L 3.0 (2.1–4.1) 1.8 (1.4–2.3) 2.5 (2.0–3.1) 3.4 (2.9–4.1) 4.1 (3.5–4.0) 5.8 (5.7–7.3) < 0.001

eGFR, mL/min/1.73m2 49 (18) 51 (20) 49 (18) 48 (16) 48 (18) 46 (15) 0.010

24-h urine protein, g/day

< 0.10 838 (46) 227 (50) 203 (45.1) 201 (43.7) 99 (44.6) 108 (48.4) < 0.05

0.10–0.49 543 (30) 131 (29) 147 (32.7) 153 (33.3) 59 (26.6) 53 (23.8)

0.50–1.49 242 (13) 55 (12) 66 (14.7) 54 (11.7) 31 (14) 36 (16.1)

≥1.50 188 (10) 43 (9) 34 (7.6) 52 (11.3) 33 (14.9) 26 (11.7)

Serum albumin, g/L 41 (4) 40 (5) 41 (4) 41 (4) 40 (4) 41 (4) 0.001

Hemoglobin, mmol/L 8.2 (1.1) 8.0 (1.1) 8.1 (1.1) 8.2 (1.1) 8.2 (1.1) 8.3 (1.1) 0.004
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each 1 SD higher fasting glucose, there was a 12% lower
rate of CKD progression (HR 0.88, 95% CI: 0.79–0.98).
For CKD progression and all-cause death, there

were no significant interactions of the prespecified
variables (race, age, proteinuria) and HOMA-IR. For
the composite cardiovascular endpoint, age (< 65 yrs.
vs. ≥65 years) significantly modified the effect of
HOMA-IR (p = 0.0003). The age-stratified results
demonstrated a trend toward a greater hazard for the
cardiovascular endpoint with greater HOMA-IR
among those < 65 years (HR 1.19, 95% CI: 0.98–1.45)
and a lower hazard for those ≥65 years (HR 0.50, 95%
CI: 0.35–0.72).

Discussion
In the present study, we examined factors that poten-
tially contribute to insulin resistance, as measured by
HOMA-IR, in individuals with mild-to-moderate CKD
in the absence of diabetes, and investigated the associ-
ation of HOMA-IR and other carbohydrate metabolism
measures with CKD progression, atherosclerotic cardio-
vascular events, and all-cause mortality. We observed
that age, current smoking, greater BMI and waist
circumference, and higher hemoglobin, triglycerides and
hsCRP were independently associated with HOMA-IR,
which is consistent with prior reports. HOMA-IR was
not significantly associated with CKD progression, ath-
erosclerotic cardiovascular events, or all-cause mortality
in adjusted models.
The current study is among the first to report signifi-

cant associations of uric acid, serum albumin, HbA1c,
and the use of non-statin lipid-lowering medications
with HOMA-IR among non-diabetics with CKD. These

associations were independent of age, sex, race, educa-
tion and other risk factors, such as SBP, BMI, physical
activity and eGFR. The use of non-statin lipid-lowering
medications was negatively associated with HOMA-IR, a
finding consistent with the prior observation that higher
cholesterol levels have been associated with HOMA-IR
[23, 24]. Hyperuricemia has been demonstrated to be
strongly associated with abnormal glucose metabolism
and insulin resistance, but to our knowledge this associ-
ation has not been reported in nondiabetics with CKD
[25, 26]. The positive association of HbA1c and
HOMA-IR suggests chronic mild hyperglycemia and de-
creased sensitivity to insulin is present even in the ab-
sence of overt diabetes in those with mild-moderate
CKD. Higher serum albumin levels and insulin resist-
ance have also been associated in nondiabetic popula-
tions without kidney disease [27, 28]. Higher serum
albumin in the setting of insulin resistance is thought to
be the consequence of increased albumin production
caused by insulin stimulation [29].
Many of the factors found to be independently

associated with HOMA-IR in CKD are consistent with
previous reports, in particular with body composition
measures, which include BMI and fat mass in CKD
patients without diabetes [30–32, 12, 24, 30, 33]. It is
postulated that the higher levels of inflammatory
mediators found in visceral fat contributes to the
development of insulin resistance [34, 35], which is
consistent with our finding that waist circumference,
BMI, and hsCRP were greater within higher quartiles
of HOMA-IR. Systemic inflammation is thought to
contribute to decreased tissue sensitivity to insulin
and the increased risk of cardiovascular disease in

Table 1 Baseline characteristics of Chronic Renal Insufficiency Cohort (CRIC) Study participants without diabetes at baseline overall
and by quartile of HOMA-IR (Continued)

Quartile of HOMA-IR, mmol/L * μU/mL

Overall Quartile 1 Quartile 2 Quartile 3 Quartile 4a Quartile 4b P-value

(0.04–2.04) (2.05–3.02) (3.03–4.55) (4.56–6.20) (6.21–41.1)

N = 1883 N = 471 N = 471 N = 471 N = 235 N = 235

Total cholesterol, mmol/L 4.9 (1.1) 5.0 (1.1) 4.9 (1.1) 4.8 (1.0) 4.9 (1.0) 4.9 (1.2) < 0.05

LDL, mmol/L 2.8 (0.9) 2.9 (0.9) 2.8 (0.9) 2.8 (0.8) 2.8 (0.8) 2.7 (0.9) 0.02

HDL, mmol/L 1.3 (0.4) 1.4 (0.5) 1.4 (0.4) 1.2 (0.4) 1.1 (0.3) 1.1 (0.3) < 0.001

Triglycerides, mmol/L 1.4 (1.0–1.9) 1.1 (0.8–1.6) 1.3 (0.9–1.7) 1.4 (1.1–2.0) 1.6 (1.2–2.4) 1.7 (1.2–2.8) < 0.001

Hemoglobin A1c, mmol/mol 39 37 38 39 41 41 < 0.001

Uric acid, umol/L 428.3 (113.0) 398.5 (113.0) 416.4 (113.0) 434.2 (107.1) 458 (107.1) 475.8 (107.1)

High-sensitivity CRP, nmol/L 22.9 (9.5–58.1) 14.3 (7.6–34.3) 21.0 (7.6–53.3) 26.7 (11.4–62.9) 32.4 (14.3–75.2) 39.0 (14.3–81.0) < 0.001

FGF-23, relative units (RU)/mL 121.8
(84.0–199.2)

111.9
(76.2–189.9)

117.0
(80.6–181.2)

128.3
(87.3–206.6)

130.4
(91.3–222.0)

136.0
(91.0–234.4)

< 0.001

Values in the table are expressed as mean (SD), median (25th–75th percentile), or N (%)
HOMA-IR – homeostasis model assessment insulin resistance; ACEi- angiotensin-converting enzyme inhibitor, ARB – angiotensin receptor blocker, eGFR – estimated
glomerular filtration rate, LDL – low density lipoprotein, HDL – high density lipoprotein, CRP – C-reactive protein, FGF-23 – fibroblast growth factor 23
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CKD by driving endothelial dysfunction and athero-
sclerosis [36].
Despite the proposed link between insulin resist-

ance, endothelial dysfunction, and atherosclerosis, the
association of insulin resistance and cardiovascular
events has not been consistent in the setting of
kidney disease [12, 30, 37–39]. A study by Shinohara
et al. demonstrated that HOMA-IR was an independ-
ent predictor of cardiovascular mortality in nondia-
betics with ESRD [37], but insulin resistance among
those with earlier CKD, assessed with the gold stand-
ard for insulin resistance, the hyperinsulinemic eugly-
cemic glucose clamp (HEGC) technique [30], or
HOMA-IR [40], was not associated with new cardio-
vascular events. In the present study, we did not find
HOMA-IR to be associated with the composite car-
diovascular disease outcome. Interestingly, we found a
trend for higher levels of HbA1c to be associated
with an increased hazard of the cardiovascular end-
point, which suggests that mild elevations in blood
glucose over time, even in the absence of overt dia-
betes, increase the risk of cardiovascular events in the
setting of mild-moderate CKD. This finding is striking
given that the positive association was observed in a

range where we would not expect higher risk, and a
recent report from the CRIC study found that HbA1c
levels were not associated with incident type 2 diabetes
[41]. A potential explanation could be that we included in-
dividuals with pre-diabetes into our study sample since
enrollment blood glucose levels were below the level of
exclusion. In a recent meta-analysis, pre-diabetes in the
general population was associated with an increased
risk of cardiovascular disease [42]. Mild hyperglycemia
has also been reported to contribute to atherosclerosis
in apparently healthy subjects and was independently
associated with greater arterial stiffness in the CRIC
Study [43, 44].
Hyperinsulinemia has been reported to influence

kidney function by inducing glomerular hyperfiltration,
endothelial dysfunction, and increased vascular perme-
ability [45, 46]. However, there have been contradictory
reports on the association of insulin resistance and CKD
progression in those without diabetes. In several studies
of populations with CKD, insulin resistance was associ-
ated with a more rapid decline in kidney function com-
pared to those who were insulin sensitive [47, 40, 48].
However, in a prospective study of 73 non-diabetic par-
ticipants with CKD, there was not a significant differ-
ence in eGFR between those who did and did not have
insulin resistance (as measured by HOMA-IR) [49]. In
the current study, we did not find an association of
HOMA-IR, HbA1c, or C-peptide with CKD progression.
Interestingly, higher levels of glucose were associated

Table 2 Multivariable-adjusted association of HOMA-IR and
factors previously reported to be associated with insulin
resistance -- Chronic Renal Insufficiency Cohort (CRIC) Study
participants without diabetes at baseline (N = 1806)

Demographic/Clinical variables β P

Age, years 0.005 0.001

Non-smoking 0.13 0.002

Systolic blood pressure, mmHg −0.001 0.28

Physical activitya − 0.0001 0.43

Anthropometric Variables

Body mass index, kg/m2 0.02 < 0.001

Waist circumference, cm 0.01 < 0.001

Fat-free mass, kg −0.003 0.15

Medication Use

No ACEi or ARB use −0.05 0.11

Laboratory Values

eGFR, mL/min/1.73m2 −0.00001 0.99

Hemoglobin, mmol/L 0.04 < 0.001

LDL, mmol/L −0.002 < 0.001

HDL, mmol/L −0.003 0.001

(log) Triglycerides, mmol/L 0.30 < 0.001

(log) High-sensitivity CRP, nmol/L 0.04 0.03
aPhysical activity measured as total reported METS in one week
Model also adjusted for sex, race, ethnicity, and education
HOMA-IR – homeostasis model assessment insulin resistance, ACEi-
angiotensin-converting enzyme inhibitor, ARB – angiotensin receptor blocker,
eGFR – estimated glomerular filtration rate, LDL – low density lipoprotein,
HDL – high density lipoprotein, CRP – C-reactive protein

Table 3 Exploratory multivariable-adjusted association of
HOMA-IR and novel factors -- Chronic Renal Insufficiency Cohort
(CRIC) Study participants without diabetes at baseline (N = 1706)

Clinical variables β P

No history of cardiovascular disease 0.01 0.86

Medication Use

No statin use 0.11 0.14

Non-statin lipid-lowering medication use −0.16 0.03

Laboratory Values

Proteinuria, g/day

< 0.10 −0.07 0.20

0.2 to < 0.5 −0.07 0.20

0.5 to < 1.5 −0.002 0.97

Hemoglobin A1c, per % 0.20 < 0.001

Uric acid, umol/L 0.03 < 0.001

(log) FGF-23, relative units (RU)/mL 0.04 0.10

Serum albumin, g/L 0.12 0.001

Model adjusted for age, sex, race, ethnicity, and education, smoking status,
systolic blood pressure, physical activity, fat free mass, body mass index, waist
circumference, angiotensin-converting enzyme inhibitor or angiotensin
receptor blocker use;, hemoglobin level, estimated glomerular filtration
rate– low density lipoprotein, high density lipoprotein; triglycerides
C-reactive protein
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with decreased CKD progression, which is unexpected
since HbA1c, the marker of prolonged hyperglycemia,
was not associated with CKD progression. This finding
should be further explored with longitudinal measures
to better define the relationship.
Prior studies have not clearly demonstrated that in-

sulin resistance predicts all-cause mortality in CKD
[30, 37, 39]. In a cohort of 170 ESRD patients in
Japan without diabetes, HOMA-IR predicted mortality in-
dependently of other risk factors, including inflammation
and BMI [37], but in a cohort of nearly all non-diabetic
elderly Caucasian men with mild-to-moderate CKD,
insulin resistance was not associated with all-cause death,
independent of classical risk factors. In the current
study, HOMA-IR and the other markers of carbohydrate
metabolism were not significantly associated with all-cause
mortality.
The overall lack of association between HOMA-IR

and important clinical endpoints in this study could be
due to an imperfect estimate of insulin resistance in
CKD. We utilized measures that largely reflect hepatic
insulin resistance (i.e., fasting insulin and glucose) to cal-
culate HOMA-IR, which does not capture peripheral in-
sulin resistance (i.e. skeletal muscle) which is thought to

be the primary location for insulin resistance in CKD
[50]. A validation study of insulin sensitivity surrogates
using a study sample of 1074 men, 495 with CKD (me-
dian eGFR 46ml/min per 1.73m2) and without CKD
deemed HOMA-IR a satisfactory surrogate as compared
to HEGC technique [38]. However, the findings of the
validation study might not extend to our study popu-
lation since it was conducted in eldery men (age 70–
71 years) from one region of Sweden with less obesity
(all with BMI < 30 kg/m2).
The observational nature of the CRIC Study and the

cross sectional analysis in identifying potential determi-
nants of HOMA-IR are limitations of the current study,
and do not allow us to establish causality. Since
HOMA-IR was assessed only at baseline, we are not able
to investigate for changes in HOMA-IR over the follow
up period and subsequently, the impact of a change in
HOMA-IR would have on the clinical outcomes of inter-
est. Further, misclassification of diabetes status is also
possible as it did not incorporate a measure of HbA1c.
Strengths of this study include the wealth of data

collected through validated measures, which allowed for
the assessment of associations of insulin resistance and
other markers of carbohydrate metabolism that have

Table 5 Multivariable-adjusted hazard ratios of renal and atherosclerotic cardiovascular composite endpoints and
all-cause mortality per 1 SD increase in HOMA-IR and other markers of carbohydrate metabolism among CRIC participants without
diabetes at baseline

Model 1b Model 2b Model 3b

HRa 95% CI HRa 95% CI HR* 95% CI

Event: Composite Renal Endpoint (ESRD/Halving of eGFR)

HOMA-IR 0.97 0.89–1.07 1.01 0.90–1.12 1.01 0.90–1.14

Glucose 0.93 0.85–1.03 0.94 0.85–1.04 0.88 0.79–0.98

HbA1c 0.98 0.89–1.07 1.00 0.90–1.10 0.94 0.85–1.04

C-peptide 1.32 1.20–1.44 1.16 1.03–1.31 1.02 0.90–1.17

Event: Composite Atherosclerotic CVD Endpoint (MI/PAD/stroke)

HOMA-IR 1.04 0.91–1.19 1.04 0.89–1.22 1.00 0.85–1.19

Glucose 1.04 0.91–1.20 1.06 0.91–1.23 1.05 0.90–1.23

HbA1c 1.22 1.07–1.39 1.22 1.06–1.40 1.16 1.00–1.34

C-peptide 1.17 1.02–1.34 1.07 0.89–1.29 1.02 0.84–1.24

Event: All-Cause Mortality

HOMA-IR 0.94 0.85–1.05 1.01 0.89–1.14 0.98 0.86–1.12

Glucose 0.96 0.87–1.07 0.99 0.89–1.11 0.99 0.88–1.11

HbA1c 1.03 0.93–1.14 1.05 0.94–1.17 0.99 0.88–1.10

C-peptide 1.18 1.06–1.31 1.16 1.01–1.33 1.09 0.94–1.27

Abbreviations: CI – confidence interval, CVD – cardiovascular disease, eGFR – estimated glomerular filtration rate, ESRD – end-stage renal disease, HbA1c –
glycosylated hemoglobin, HOMA-IR – homeostasis model assessment insulin resistance, HR – hazard ratio, MI – myocardial infarction, PAD – peripheral arterial disease
aPer 1 standard deviation increase
Model 1 includes adjustment for age, sex, race, ethnicity, level of education, and clinical center
Model 2 includes adjustment for variables in Model 1 plus body mass index, waist circumference, smoking status, systolic BP, ACEi/ARB use, HDL, LDL,
triglycerides, high sensitivity CRP, fat-free mass, eGFR, hemoglobin, physical activity
Model 3 includes adjustment for variables in Model 2 plus use of statins, use of other lipid-lowering medications, history of CVD, 24-h urine protein, FGF-23,
uric acid, serum albumin
bSample sizes: Model 1 (N = 1882), Model 2 (N = 1806), Model 3 (N = 1706)

Schrauben et al. BMC Nephrology           (2019) 20:60 Page 8 of 11



been minimally explored, as well as the description of
novel factors associated with insulin resistance in a
population with mild-to-moderate CKD without
diabetes. Additional strengths include the evaluation of
the health implications of HOMA-IR over a broad range
of eGFR values and across multiple racial/ethnic groups,
which expands the generalization from other studies that
were carried out on highly selected populations (e.g.,
only male or only Caucasian) with limited range of
eGFR.

Conclusions
The results of the current study of participants with
mild-moderate CKD in the absence of diabetes have
demonstrated novel factors positively associated with
HOMA-IR, including serum albumin, HbA1c, and uric
acid. We also found consistent associations of body
composition measures and systemic inflammation with
HOMA-IR. HOMA-IR, fasting glucose, and C-peptide
were not significantly associated with development of
renal or atherosclerotic cardiovascular events, or
all-cause mortality, which adds to the growing literature
describing an inconsistent relationship of insulin
resistance with important CKD-related outcomes.
Assessment of peripheral rather than hepatic insulin
resistance may better define the role of insulin resist-
ance in mild-moderate CKD. Increased HbA1c was
associated with an elevated hazard of the cardiovascu-
lar endpoint, suggesting that mild hyperglycemia, even
in the absence of overt diabetes, may increase the risk
of cardiovascular events in CKD. This finding should
be further explored with longitudinal measures to
better define the relationship.
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