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Abstract

Background: Risk of cardiac events and cardiovascular disease (CVD) in end-stage renal disease (ESRD) patients are
predicted by coronary artery calcification (CAC) independently. It is not clear to what extent low bone mineral
density (BMD) is associated with higher risk of CAC and if sex interacts. We investigated the sex-specific associations
of CAC score with total body BMD (tBMD) as well as with BMD of different skeletal sub-regions.

Methods: In 174 ESRD patients, median age 57 (10th–90th percentiles 29–75) years, 63% males, BMD (measured by
dual-energy X-ray absorptiometry; DXA), CAC score (measured by cardiac CT) and circulating inflammatory
biomarkers were analysed.

Results: A total of 104 (60%) patients with CAC > 100 AUs were older, had higher prevalence of both clinical CVD and
diabetes, higher level of high sensitivity C-reactive protein, tumour necrosis factor, interleukin-6 and lower T-score of
tBMD. Female patients had significantly lower tBMD and BMD of all skeletal sub-regions, except head, than male
patients. Female patients with high CAC (> 100 AUs) had significantly decreased T-score of tBMD, and lower BMD of
arms, legs than those low CAC (≤ 100 AUs); elevated CAC score were associated with tBMD, T-score, Z-score of tBMD
and BMD of arms and legs, while no such differences was observed in males. Multivariate generalized linear model
(GLM) analysis adjusted for age, diabetes and hsCRP showed that in females per SD higher CAC score (1057 AUs) was
predicted by either per SD (0.13 g/cm2) lower tBMD or per SD (0.17 g/cm2) lower BMD at legs. No such associations
were found in male ESRD patients.

Conclusions: In female, but not male, lower BMD, in particular sub-regions of legs, was associated with higher CAC
score independently. Low BMD has the potential to identify increased risk for high CAC score in ESRD patients.

Keywords: Bone mineral density, Coronary calcification, End-stage renal disease

* Correspondence: zhiminchen@zju.edu.cn
1Kidney Disease Center, The First Affiliated Hospital, College of Medicine,
Zhejiang University, Hangzhou, China
2Division of Renal Medicine and Baxter Novum, Department of Clinical
Sciences, Intervention and Technology, Karolinska Institutet, Stockholm,
Sweden
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Chen et al. BMC Nephrology           (2019) 20:59 
https://doi.org/10.1186/s12882-019-1235-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12882-019-1235-z&domain=pdf
mailto:zhiminchen@zju.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Cardiovascular disease (CVD) is a main cause of morbidity
and mortality of end-stage renal disease (ESRD) patients
[1] and the risk of CVD is predicted by coronary artery cal-
cification (CAC) independently in ESRD patients [2, 3].
Thus, CAC can be an independent risk factor of CVD be-
yond conventional risk factors [4, 5]. In ESRD patients,
chronic kidney disease (CKD) - mineral and bone disorders
(CKD-MBD) is a major complication. Decreased bone
mineral density (BMD) associates with increased fracture
risk and predicts higher mortality and cardiovascular
events in CKD patients and the general population [6–8].
Low BMD is associated with higher risk of CVD [6, 9, 10].
Bone mineralization and vascular calcification share

some common pathways [11, 12]. An association of re-
duced BMD with vascular calcification has been found
in the general population [13, 14] as well as in ESRD pa-
tients [15, 16]. However, no such association was found
in some other studies in the general population [17–20]
and ESRD patients [21]. Decreased cortical bone density
has been found to associate with CAC [22], and progres-
sion of CAC was predicted by osteoporosis [23] in dialy-
sis patients. Several molecular mechanisms have been
suggested for the link between bone metabolism and
vascular calcification [24].
Since it is not clear to what extent a decreased BMD

may be linked to increased risk of CAC and other mani-
festations in ESRD patients, we investigated sex-specific
associations between total body BMD (tBMD) and BMD
of different skeletal sub-regions, determined by
dual-energy X-ray absorptiometry (DXA), and CAC, de-
termined by computed tomography (CT) of the heart.

Methods
Patients
One hundred seventy-four ESRD patients with median
age of 57 (10th–90th percentiles 29–75) years, 63%
males were enlisted at the Department of Renal Medi-
cine at Karolinska University Hospital at Huddinge,
Stockholm, between March 2008 and June 2015. All pa-
tients from three different cohorts, who had undergone
both coronary CT and DXA measurements, were in-
cluded, 69 (40%) were incident dialysis patients, 67
(38%) prevalent peritoneal dialysis (PD) patients and 38
(22%) recipients of living donor kidney transplant
(LD-Rtx). The Ethics Committee of Karolinska Univer-
sity Hospital Huddinge approved the study protocols. In-
formed consent in written was obtained from all
patients. Baseline characteristics of the 174 included
ESRD patients are outlined in Table 1.

Measurements of BMD
BMD was measured by dual-energy X-ray absorpti-
ometry (DXA) [25] and was presented in g/cm2 or

T-score (i.e. the number of standard deviations differ-
ence in BMD compared to young adults of the same
gender) or Z-score (indicating the number of standard
deviations difference in BMD compared to an
age-matched reference population of the same gender)).
DXA was performed in all 174 patients using a DPX-L
device (GE Lunar iDXA with software enCore 2008 ver-
sion 12, 30, 008, GE Medical systems, Chalfont St. Giles,
UK). BMD of total body (tBMD) and several skeletal
sub-regions were also obtained: head, arms, legs, trunk,
ribs, spine and pelvis.

Measurements of CAC
CAC was measured by CT, a non-invasive approach,
performed on a 64-channel detector scanner (LightSpeed
VCT; General Electric (GE) Healthcare, Milwaukee, WI,
USA) in cine mode. CAC was quantified in Agatston
units (AUs) as a lesion with an area > 1 mm2 and a peak
intensity > 130 Hounsfield Units (HUs) based on the
Agatston method previously described in detail [26].
Details of CAC scan ascertainment and quantification
have been published [27–29] in our previous study. In
this study, we used a CAC score > 100 AUs which was
associated with an higer risk of myocardial ischaemia
and cardiac events [30] to identify patients with definite
to extensive plaque burden.

Laboratory analysis and other measurements
Plasma blood samples were received after an over-
night fast in the morning in the ESRD patients. If not
analysed immediately, the samples were kept frozen at
− 70 °C. Plasma tumour necrosis factor (TNF),
interleukin-6 (IL-6) and total testosterone concentra-
tions were tested by commercial kits according to the
instructions of the manufacturer available for an
Immulite Automatic Analyzer (Siemens Medical
Solutions, Los Angeles, CA, USA). Pentraxin-3
(PTX3) was tested by ELISA kits of R&D systems
(Abingdon, UK). The level of haemoglobin, serum
creatinine, triglycerides, cholesterol, and high density
lipoprotein (HDL)-cholesterol, calcium, phosphorus,
intact parathyroid hormone (iPTH), 25(OH) and
1,25(OH)2 vitamin D3, and high-sensitivity C-reactive
protein (hsCRP) were tested by routine methods at
the Department of Laboratory Medicine, Karolinska
University Hospital, Huddinge, Sweden.
At the baseline body mass index (BMI) was re-

corded according to height and body weight. Arterial
systolic and diastolic blood pressures (BP) were
measured three times after a 15-min resting period in
the morning. Earlier or present occurrence of
documented of cerebrovascular, cardiovascular, or per-
ipheral vascular disease like patients had suffered
from cerebrovascular disease (stroke), myocardial
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infarctions, clinical signs of ischemic heart disease
(angina pectoris), peripheral ischemic atherosclerotic
vascular disease, had a history of an aortic aneurysm,
mitral stenosis, and cardiac failure, considered as
signs of CVD and details of CVD event determination
have been published [31].

Statistical analysis
Data are presented as median (range of 10th to 90th
percentile) or percentage, as appropriate. Comparisons
between two groups were assessed by the
non-parametric Wilcoxon test for continuous vari-
ables and Fischer’s exact test for categorical variables.

Spearman rank correlation analysis was used to deter-
mine associations between selected parameters. A re-
ceiver operating characteristics (ROC) curve was
plotted for T-score of tBMD, age and hsCRP in rela-
tion to presence of high CAC score (>100 AUs). To
study the associations between BMD, CAC score and
other parameters, a multivariable generalized linear
model (GLM) analysis were performed. In GLM ana-
lysis (stratified by gender), age, diabetes and hsCRP
were included in the model. Statistical analyses were
performed using statistical software SAS version 9.4
(SAS Campus Drive, Cary, NC, USA). Statistical sig-
nificance was set at the level of p < 0.05.

Table 1 Clinical and biochemical characteristics for the total 174 ESRD patients and for two subgroups based according to CAC score

Total patients
n = 174

Low CAC
(≤ 100 AUs)
(n = 70)

High CAC
(>100 AUs)
(n = 104)

P value

Demography and metabolic biomarkers

Age, years 57 (29, 75) 41 (23, 63) 64 (49, 78) < 0.001

Male, % 63 57 67 0.173

Diabetes, % 28 10 40 < 0.001

CVD, % 22 3 36 < 0.001

Body mass index, kg/m2 24.8 (19.9, 30.8) 23.9 (19.7, 30.7) 25.2 (20.7, 30.8) 0.080

Systolic BP, mmHg 139 (114, 169) 135 (114, 163) 143 (113, 179) 0.024

Diastolic BP, mmHg 83 (67, 97) 85 (70, 100) 81 (66, 96) 0.123

Hemoglobin, g/L 114 (94, 130) 113 (92, 128) 114 (100, 130) 0.064

Triglycerides, mmol/L 1.6 (0.9, 3.0) 1.6 (0.9, 2.8) 1.4 (0.9, 3.6) 0.039

Cholesterol, mmol/L 4.7 (3.3, 6.6) 4.6 (3.4, 6.1) 4.6 (3.0, 5.7) 0.175

HDL-cholesterol, mmol/L 1.2 (0.8, 2.3) 1.4 (0.9, 2.4) 1.1 (0.9, 2.3) 0.373

Creatinine, μmol/L 727 (491, 1012) 738 (509, 1185) 729 (414, 981) 0.014

S-albumin, g/L 33 (26, 39) 35 (28, 40) 32 (23, 38) 0.001

hsCRP, mg/L 2.1 (0.4, 18.7) 1.2 (0.2, 9.1) 3.6 (0.8, 35.4) 0.003

TNF, pg/ml a 15.3 (9.9, 20.4) 12.9 (8.0, 19.8) 16.7 (12.0, 20.7) 0.003

IL-6, pg/ml b 4.5 (0.9, 14.9) 2.1 (0.4, 8.1) 6.9 (2.2, 20.5) < 0.001

PTX3 ng/mL c 1.7 (0.7, 6.2) 1.8 (0.6, 7.1) 1.7 (0.7, 7.1) 0.758

Total testosterone in male, nmol/Ld 11.0 (5.8, 20.5) 12.2 (7.4, 25.6) 10.2 (4.7, 16.9) 0.025

Mineral bone disease biomarkers

iPTH, ng/L 300 (96, 655) 265 (113, 658) 320 (79, 735) 0.595

Calcium, mmol/L 2.3 (2.0, 2.5) 2.3 (2.1, 2.5) 2.2 (1.9, 2.6) 0.924

Phosphate, mmol/L 1.8 (1.2, 2.5) 1.9 (1.2, 2.4) 1.8 (1.2, 2.6) 0.559

1,25-OH vitamin D, nmol/L e 13 (9, 28) 16.5 (9, 34) 11 (9, 23) 0.054

25-OH vitamin D, ng/L f 29 (13, 70) 33 (14, 57) 29 (14, 80) 0.861

tBMD, g/cm2 1.12 (0.92, 1.30) 1.13 (1.00, 1.31) 1.10 (0.91, 1.27) 0.095

T-score of tBMD −0.8 (−2.7, 1.1) − 0.6 (− 2.0, 1.2) −1.1 (− 3.1, 1.1) 0.006

Z-score of tBMD − 0.4 (− 1.8, 1.2) − 0.1 (− 1.5, 1.1) − 0.5 (− 2.4, 1.3) 0.097

Data presented as median (range of 10th - 90th percentile) or percentage
Abbreviations: BP blood pressure, HDL high-density lipoprotein, hsCRP high sensitivity C-reactive protein, TNF tumor necrosis factor, IL-6 interleukin-6, PTX pentraxin,
iPTH intact parathyroid hormone, CAC coronary artery calcification, tBMD total bone mineral density
an = 151, bn = 166, cn = 135; dn = 95; en = 130, fn = 105
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Results
Clinical and biochemical characteristics of these ESRD
patients
Demographics and clinical characteristics of 174 ESRD
patients are shown in Table 1; A total of 104 (60%) pa-
tients had CAC > 100 AUs. As expected, patients with
high CAC (> 100 AUs) were older, higher prevalence of
clinical CVD and diabetes, had higher levels of systolic
BP, hsCRP, TNF, IL-6 and, lower levels of triglycerides,
creatinine, serum albumin, total testosterone in male,and
T-score of tBMD (Table 1). In receiver-operator charac-
teristics curve (ROC) analysis, high CAC (> 100 AUs)
was associated with age (AUC, 0.89), hsCRP (AUC, 0.74)
and T-score of tBMD (0.38) (Fig. 1). When placed into
two subgroups based on the median of tBMD level, are
shown in Additional file 1: Table S1. Patients with tBMD
lower than median (≤1.117 g/cm2; n = 87) had lower
prevalence of male, lower BMI, creatinine, phosphate
and higher concentration of HDL than those with tBMD
higher than median (> 1.117 g/cm2; n = 87). No statisti-
cally significant differences were observed in any of the
other variables (Additional file 1: Table S1).

Differences of BMD in female and male ESRD patients
Female ESRD patients had significantly lower tBMD and
BMD of all skeletal sub-regions, except head, than male
patients (Fig. 2). Female patients with high CAC (> 100
AUs) had significantly decreased T-score of tBMD and
sub-regions BMD including armsand legs than patients

with low CAC (≤ 100 AUs) (Table 2). No such differ-
ences were observed in males (Table 2).

Univariate correlation analysis of CAC score in relation to
BMD
In Spearman rank correlation analysis, CAC score corre-
lated with age (Fig. 3a), diabetes (rho = 0.35, p < 0.001),
CVD (rho = 0.45, p < 0.001), BMI (rho = 0.18, p = 0.017),
HDL-cholesterol (rho = − 0.18, p = 0.019), 1,25-OH
vitamin D (rho = − 0.30, p < 0.001), albumin (rho = −
0.24, p = 0.001) and inflammatory biomarkers: hsCRP
(rho = 0.40, p < 0.001), IL-6 (rho = 0.51, p < 0.001) and
TNF (rho = 0.39, p < 0.001) significantly. An inverse cor-
relation between CAC score and total testosterone was
found in 95 males (Fig. 3b).
Higher CAC score was associated with tBMD (Fig. 3c),

T-score and Z-score of tBMD, and sub-regions BMD of
arms and legs (Fig. 3d) in females (Table 3). In males, el-
evated CAC score was only associated with BMD at
head (Table 3).

Multivariate generalized linear regression analysis of
predictors of CAC score
In multivariate GLM analysis adjusted for age, diabetes
and hsCRP found that patients one SD (1057 AUs)
higher CAC score was predicted independently by either
one SD (0.17 g/cm2) lower BMD at the legs (Table 4) or
one SD (0.13 g/cm2) lower tBMD (Table 5) in female
ESRD. No such associations were found in male ESRD
patients in whom one SD (1484 AUs) higher CAC score
was independently predicted by one SD (16 years) higher
age (Table 6 and Table 7).
When total testosterone in 95 males was added to the

model, 1-SD higher BMD at legs (Table 6) but not 1-SD
higher tBMD (Table 7) was associated with 1-SD higher
CAC score independently.

Discussion
To the best of our knowledge, this is the first study in-
vestigating how sex affects the associations of BMD of
different skeletal sub-regions with CAC score in ESRD.
Our main observation is that lower tBMD and lower
BMD of skeletal sub-regions, in particular at sub-regions
of the legs, were associated with increased CAC score
independently in females only.
Since several epidemiological studies demonstrated co-

existence, but no independent association, of vascular
calcification with reduced BMD, it has been proposed
that these conditions represent two independent
age-related processes [32, 33]. Although they are patho-
genically connected [13, 34, 35], the detailed mecha-
nism(s) for the relationship between vascular
calcification and BMD are still unclear. Low BMD is as-
sociated with an increased risk of CVD [6, 10, 36] and

Fig. 1 Areas under the curves (AUC) of receiver-operating
characteristics curve (ROC) analysis for T-score of tBMD, age and
hsCRP in relation to presence of high CAC score (>100 AUs). The
separate AUCs are as follows: AUC of age (0.89), hsCRP (0.74) and
T-score of tBMD (0.38)
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predicts cardiac events and increased mortality in CKD
patients and the general population [6–8]. Low BMD
and vascular calcification are both common features of
the uremic phenotype [37]. Kim et al. [18] found - in a
statistical model stratified by gender - when adjusting
for age and comorbid conditions, there is no significant
association of BMD with CAC. We report that in fe-
males, whereas lower BMD, in particular sub-regions of
legs, was associated with a higher CAC score independ-
ently, even after adjustment for age, diabetes and hsCRP.
No such associations were observed in males. Our ob-
servation that sex should be taken into consideration
when links between bone health and vascular calcifica-
tion are assessed corresponds with other reports show-
ing associations between lower BMD and presence of
CAC in ESRD [6, 9, 10].
It is not known which specific bone location is opti-

mal when studying links between BMD and vascular
calcification. It is not evident how one should interpret
our observation that tBMD and in particular BMD of

legs rather than BMD of other central locations was
associated to CAC score. In non-renal patients, lower
BMD of the spine, but not the hip [14], was associated
with aortic calcification independently. In contrast,
Disthabanchong et al. [7] found that in haemodialysis
patients, CAC was negatively associated with BMD of
hip but not with BMD of lumbar spine. Uyama et al.
[35] found an inverse correlation between carotid
plaque score and tBMD, but no association with BMD
of lumbar spine. Banks et al. [34] found in women that
reduced BMD of the proximal femur associated with
aortic calcification. Kohno et al. [38] reported in male
HD patients association of more bone loss of the
ultra-distal radius with higer mortality. Those incon-
sistent results may be related to differences in popula-
tion demographics, methods and anatomical sites of
measurement of vascular calcification. Nevertheless, in
this study, when examining BMD by DXA of different
skeletal sub-regions, the correlation between BMD and
CAC was more significant in legs than the spine. Since

Fig. 2 Differences of BMD at sub-regions and total BMD (tBMD) in male and female ESRD patients

Table 2 BMD at sub-regions and total BMD (tBMD) in low and high CAC groups stratified by gender

Female Male

Low CAC
(≤ 100 AUs)
(n = 30)

High CAC
(>100 AUs)
(n = 34)

p-value Low CAC
(≤ 100 AUs)
(n = 40)

High CAC
(>100AUs)
(n = 70)

p-value

Head, g/cm2 2.19 (1.94, 2.65) 2.11 (1.73, 2.66) 0.162 2.25 (1.90, 2.60) 2.13 (1.73, 2.45) 0.023

Arms, g/cm2 0.73 (0.63, 1.01) 0.68 (0.49, 0.82) 0.029 0.86 (0.71, 1.09) 0.84 (0.67, 1.01) 0.233

Legs, g/cm2 1.16 (0.95, 1.30) 1.02 (0.78, 1.26) 0.012 1.29 (1.06, 1.52) 1.24 (1.03, 1.45) 0.239

Trunk, g/cm2 0.83 (0.69, 1.00) 0.82 (0.66, 1.00) 0.439 0.90 (0.79, 1.06) 0.91 (0.75, 1.09) 0.742

Ribs, g/cm2 0.66 (0.50, 0.87) 0.62 (0.50, 0.88) 0.480 0.75 (0.59, 0.89) 0.74 (0.59, 0.97) 0.797

Pelvis, g/cm2 0.94 (0.73, 1.15) 0.88 (0.71, 1.13) 0.130 1.02 (0.83, 1.26) 1.00 (0.81, 1.20) 0.217

Spine, g/cm2 0.92 (0.78, 1.20) 0.97 (0.70, 1.11) 0.989 1.04 (0.87, 1.26) 1.08 (0.86, 1.35) 0.450

tBMD, g/cm2 1.07 (0.93, 1.20) 0.99 (0.83, 1.20) 0.055 1.16 (1.03, 1.33) 1.12 (0.96, 1.31) 0.143

T-score of tBMD −0.5 (−2.0, 0.9) −1.5 (−3.5, 1.1) 0.021 −0.8 (− 2.2, 1.3) − 0.9 (− 2.9, 1.1) 0.134

Z-score of tBMD 0.1 (− 1.2, 1.2) − 0.2 (−2.0, 1.4) 0.228 − 0.5 (− 1.5, 1.1) −0.5 (− 2.5, 1.2) 0.442
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DXA may be influenced by signals from a calcified
aorta [7], we presume that the value for spine BMD
may be overestimated.
Our report on a significant inverse relationship be-

tween BMD and CAC in females only accords with
previous studies [39, 40]. Bakhireva et al. [41] reported

that higher BMD was associated with reduced CAC of
all skeletal sites after adjustment for confounders in
women using hormone therapy but not in males, nor
in females not on HT. Kim et al. [18] also reported
that a significant relationship between BMD and
CAC existed only in women. In accordance,
Campos-Obando et al. [19] found significant associa-
tions between BMD loss and follow-up CAC only in
the subgroup of women with lower estradiol levels.
Kiel et al. [42] from the Framingham cohort reported a
lack of association between BMD loss and aortic calci-
fication in men. Jensky et al. [43] found the association
of BMD and CAC to be stronger in women without
dyslipidemia in the multi-ethnic study of

Fig. 3 CAC score in ESRD patients associated with: age (n = 174, a), total testosterone in men (n = 95, b), and - in women only - with total BMD
(n = 64, c) and BMD at legs (n = 64, d)

Table 3 Spearman’s Rho correlations of CAC score and BMD at
sub-regions

CAC score Rho correlations

Female Male

Head, g/cm2 − 0.16 −0.21*

Arms, g/cm2 −0.27* −0.07

Legs, g/cm2 −0.40** −0.07

Trunk, g/cm2 −0.16 0.01

Ribs, g/cm2 −0.16 −0.01

Pelvis, g/cm2 −0.20 −0.08

Spine, g/cm2 −0.06 0.14

tBMD, g/cm2 −0.30* −0.08

T-score of tBMD −0.35** −0.10

Z-score of tBMD −0.26* −0.02

Significant correlations are marked: *P < 0.05, **P < 0.01

Table 4 Muliple regression for 1-SD (1057 AUs) higher CAC
score in 64 female ESRD patients: BMD at legs

Multivariate model
(n = 64, adjusted r2 = 0.17)

Beta Standard error P value

Higher age (per SD, 16 years) 0.07 0.12 0.58

Higher hsCRP (per SD, 10.5 mmol/L) 0.15 0.12 0.19

Diabetes (yes/no) 0.23 0.27 0.06

Higher BMD at legs (per SD, 0.17 g/cm2) −0.28 0.12 0.02
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atherosclerosis cohort. The independent inverse asso-
ciation between BMD and CAC observed in females
only suggests the link between arterial calcification
and bone mineralization are mediated by sex
hormones.
In nondialysis male CKD patients, the reduction in

testosterone levels observed with progressive CKD was
inversely associated with endothelial dysfunction and ex-
acerbated the risk of future cardiac events [44]. Testos-
terone concentrations inversely correlate with CVD
related and all-caused mortality in CKD patients [45].
Studies investigating possible links of testosterone with
vascular calcification have been inconsistent. Whereas
two studies show no relationship in males and females
[46, 47]; Phillips et al. [48] found in women an inverse
relationship between free testosterone and severity of
coronary disease. Increasing evidences points towards a
protective effect (low testosterone levels associated with
high cardiovascular risk) in both females [49–51] and
males [52–55]. For the first time, we report on a signifi-
cant inverse relationship between total testosterone and
CAC score among the men. Testosterone has positive
effects on endothelium by directly stimulating endothe-
lium-derived nitric oxide [56] and stimulate endothelial
progenitor cells, which play a key role in endothelial

repair [57]. Furthermore, while testosterone has anabolic
effects, including promotion of muscle strength and
muscle mass, bone density and maturation, women have
much lower levels of testosterone than men. On the
other hand, deficiency of estrogen, whose beneficial ef-
fects on the coronary arteries have been reported only in
women [58], has been proposed to be a common medi-
ator in the emergence of CVD and bone loss in post-
menopausal women [59]. The relative contributions of
estrogen and testosterone to skeletal homeostasis that
may initiate bone loss are still uncertain [60]. It is can
be speculated that dysregulation of testosterone and
testosterone deficiency may have accounted for the ob-
served sex difference with inverse association of BMD
with CAC only in women while in men – when testos-
terone was added into the model – higher BMD associ-
ated with higher CAC. This intriguing observation
seems to provide further support for sex differentiating
links between hormonal status, BMD and vascular
calcification.
This study should be interpreted with some limita-

tions. First, no conclusions can be made regarding
causality because of the observational design of the
study. Second, due to the limited number of partici-
pants and the risk of type-2 statistical error, our find-
ings should be interpreted with caution. Third, there
are limitations of the methods applied: for measure-
ment of BMD, DXA may not be an ideal method,
since it cannot distinguish between bone mineral con-
tent and extra-osseous calcifications; and, use of CT
for measurement of CAC could not distinguish med-
ial from intimal calcification [15]. Fourth, data on
hormone replacement therapy, menopause and sex
hormone levels in women were not available.

Table 5 Muliple regression for 1-SD (1057 AUs) higher CAC
score in 64 female ESRD patients: tBMD

Multivariate model
(n = 64, adjusted r2 = 0.16)

Beta Standard error P value

Higher age (per SD, 16 years) 0.06 0.12 0.62

Higher hsCRP (per SD, 10.5 mmol/L) 0.16 0.12 0.17

Diabetes (yes/no) 0.27 0.27 0.02

Higher tBMD (per SD, 0.13 g/cm2) −0.27 0.12 0.03

Abbreviations: GLM generalized linear model, CAC coronary artery calcification,
hsCRP high sensitivity C-reactive protein, tBMD total bone mineral density

Table 6 Muliple regression for 1-SD (1484 AUs) higher CAC
score in 110 male ESRD patients: BMD at legs

Multivariate
model (GLM)

Model 1 (n = 110,
adjusted r2 = 0.40)

Model 2 (n = 95,
adjusted r2 = 0.40)

Beta Standard
error

P value Beta Standard
error

P value

Higher age
(per SD, 16 years)

0.61 0.07 < 0.01 0.62 0.07 < 0.01

Higher hsCRP
(per SD, 11.8 mmol/L)

0.07 0.07 0.39 0.07 0.07 0.43

Diabetes (yes/no) 0.11 0.15 0.16 0.11 0.17 0.18

Higher BMD at legs
(per SD, 0.16 g/cm2)

0.12 0.07 0.13 0.16 0.07 0.05

Higher total
testoterone
(per SD, 7.1 nmol/L)

0.02 0.08 0.78

Table 7 Muliple regression for 1-SD (1484 AUs) higher CAC
score in 110 male ESRD patients: tBMD

Multivariate
model (GLM)

Model 1 (n = 110,
adjusted r2 = 0.40)

Model 2 (n = 95,
adjusted r2 = 0.40)

Beta Standard
error

P value Beta Standard
error

P value

Higher age
(per SD, 16 years)

0.61 0.07 < 0.01 0.61 0.08 < 0.01

Higher hsCRP
(per SD, 11.8 mmol/L)

0.06 0.07 0.41 0.06 0.07 0.45

Diabetes (yes/no) 0.10 0.15 0.21 0.10 0.17 0.22

Higher tBMD
(per SD, 0.12 g/cm2)

0.10 0.07 0.19 0.13 0.07 0.11

Higher total
testosterone
(per SD, 7.1 nmol/L)

0.03 0.08 0.71

Abbreviations: GLM, generalized linear model, CAC coronary artery
calcification, hsCRP high sensitivity C-reactive protein, tBMD total
bone mineral density
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Conclusions
In conclusion, lower BMD (tBMD and BMD of
sub-regions, in particular the sub-region of legs) was as-
sociated with higher CAC scores independently, but only
in female ESRD patients. Our main finding that low
BMD of legs significantly associates with high CAC
scores even when adjusted for age, diabetes and hsCRP
should encourage further studies to elucidate the specific
mechanisms linking regional differences in bone metab-
olism and gender differences to vascular calcification.
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Additional file 1: Table S1. Clinical and biochemical characteristics for
the total 174 ESRD patients and for two subgroups based on median total
body BMD (tBMD) level. Data presented as median (range of 10th - 90th
percentile) or percentage. Abbreviations: BP, blood pressure; HDL,
high-density lipoprotein; hsCRP, high sensitivity C-reactive protein; TNF,
tumor necrosis factor; IL-6, interleukin-6; PTX, pentraxin; iPTH, intact
parathyroid hormone; CAC, coronary artery calcification; tBMD, total
bone mineral density. a; n = 151, b; n = 166, c; n = 135; d; n = 95; e;
n = 130, f; n = 105. (DOC 52 kb)

Abbreviations
AUC: Area under the curve; AUs: Agatston units; BMD: Bone mineral density;
BMI: Body mass index; BP: Blood pressures; CAC: Coronary artery calcification;
CKD: Chronic kidney disease; CKD-MBD: Chronic kidney disease - mineral and
bone disorders; CT: Computed tomography; CVD: Cardiovascular disease;
DXA: Dual-energy X-ray absorptiometry; ESRD: End-stage renal disease;
GE: General Electric; GLM: Generalized linear model; HDL: High density
lipoprotein; hsCRP: High-sensitivity C-reactive protein; IL-6: Interleukin-6;
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PD: Peritoneal dialysis; PTX3: Pentraxin-3; ROC: Receiver operating
characteristics; tBMD: Total body BMD; TNF: Tumour necrosis factor
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