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Abstract

Background: A classification tree model (CT-PIRP) was developed in 2013 to predict the annual renal function
decline of patients with chronic kidney disease (CKD) participating in the PIRP (Progetto Insufficienza Renale
Progressiva) project, which involves thirteen Nephrology Hospital Units in Emilia-Romagna (Italy). This model
identified seven subgroups with specific combinations of baseline characteristics that were associated with a
differential estimated glomerular filtration rate (eGFR) annual decline, but the model’s ability to predict mortality
and renal replacement therapy (RRT) has not been established yet.

Methods: Survival analysis was used to determine whether CT-PIRP subgroups identified in the derivation cohort
(n = 2265) had different mortality and RRT risks. Temporal validation was performed in a matched cohort (n = 2051)
of subsequently enrolled PIRP patients, in which discrimination and calibration were assessed using Kaplan-Meier
survival curves, Cox regression and Fine & Gray competing risk modeling.

Results: In both cohorts mortality risk was higher for subgroups 3 (proteinuric, low eGFR, high serum phosphate) and
lower for subgroups 1 (proteinuric, high eGFR), 4 (non-proteinuric, younger, non-diabetic) and 5 (non-proteinuric,
younger, diabetic). Risk of RRT was higher for subgroups 3 and 2 (proteinuric, low eGFR, low serum phosphate), while
subgroups 1, 6 (non-proteinuric, old females) and 7 (non-proteinuric, old males) showed lower risk. Calibration was
excellent for mortality in all subgroups while for RRT it was overall good except in subgroups 4 and 5.

Conclusions: The CT-PIRP model is a temporally validated prediction tool for mortality and RRT, based on variables
routinely collected, that could assist decision-making regarding the treatment of incident CKD patients. External
validation in other CKD populations is needed to determine its generalizability.
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Background
The high worldwide prevalence of chronic kidney dis-
ease (CKD) [1, 2] and its burden on health care costs
urges clinicians to accurately identify patients at high
risk of poor prognosis. Prognostic models predicting
renal failure in CKD patients have been recently devel-
oped [3–6] with the aim to facilitate effective clinical
management of CKD patients, for instance timely plan-
ning of dialysis, and to achieve a more efficient cost allo-
cation based on patients’ differential risk of renal failure
and death.
In 2013 our group developed a classification tree

model (hereafter named CT-PIRP) to stratify patients ac-
cording to their annual estimated glomerular filtration
rate (eGFR) decline. This model identified seven sub-
groups characterized by specific combinations of six var-
iables (gender, age, proteinuria, baseline eGFR,
phosphate levels, diabetes) which were associated with
different levels of eGFR decline [7].
Because eGFR decline is correlated with kidney failure

and death [8–11], we expect that the subgroups identi-
fied by the CT-PIRP model would have different risks of
end-stage renal disease and of death. In
community-based clinical settings in which general prac-
titioners (GPs) are involved and advised to refer CKD
patients to specialists in an early stage of the disease,
eGFR decline is the main driver of adverse renal out-
comes [12], because it reflects the underlying nephropa-
thy, and patients’ adherence and response to specific
therapies. However, the ability of the CT-PIRP model to
predict renal replacement therapy (RRT) initiation and
mortality needs to be determined. The aim of this paper
is therefore to investigate the ability of the CT-PIRP
model to predict RRT initiation and mortality, and to
temporally validate the model on a cohort of CKD pa-
tients drawn from the PIRP project in a subsequent time
interval. A validated CT-PIRP model could be very use-
ful for nephrologists and GPs to stratify patients into
clinical phenotypes at differential risks of three out-
comes (eGFR decline, RRT inception and death), thereby
assisting them in planning targeted follow-up strategies
and treatments.

Methods
Data source
The study population consists of patients participating in
the PIRP project [13], a collaborative network of nephrolo-
gists and general practitioners operating in Emilia-Romagna,
a region of North-Eastern Italy with 4,351,393 inhabitants
(2011 census data, National Institute of Statistics). The study
was exempt from approval from the Ethics Committee of
Emilia-Romagna. It was conducted in conformity with the
regulations for data management from the Regional Health
Authority of Emilia-Romagna, and with the Italian Code of

conduct and professional practice applying to processing of
personal data for statistical and scientific purposes (art. 20–
21, legislative decree 196/2003; https://www.garanteprivacy.
it/documents/10160/0/Codice+in+materia+di+protezione+d
ei+dati+personali+%28Testo+coordinato%29) published in
the Official Journal no. 190 of August 14, 2004, which expli-
citly exempts the need for approval from the Ethics Com-
mittee when using anonymous data (Preamble number 8).
In Italy, anonymous administrative data-gathering is subject
to the law Protection of individuals and other subjects with
regard to the processing of personal data, Act no. 675 of
31.12.1996 (amended by Legislative Decree no. 123 of
09.05.1997, no. 255 of 28.07.1997, no. 135 of 08.05.1998, no.
171 of 13.05.1998, no. 389 of 6.11.1998, no. 51 of
26.02.1999, no. 135 of 11.05.1999, no. 281 of 30.07.1999, no.
282 of 30.07.1999 and no. 467 of 28.12.2001) (https://www.
garanteprivacy.it/web/guest/home/docweb/-/docweb-display
/docweb/28335). Patients enrolled in the PIRP project pro-
vide written consent to use their anonymized data.
The PIRP project is funded by the Emilia-Romagna

Region and started in 2004 with the aim to delineate
intervention strategies for delaying illness progression,
to increase awareness of CKD complications and to
optimize CKD patient care and is still ongoing. Patients
enrolled in the project receive specialized care, tailored
to their severity and comorbidities, in 13 regional neph-
rology units to which they were referred by primary care
physicians. The PIRP database collects demographic,
clinical and laboratory characteristics of patients as well
as their prescribed pharmacological treatment, and as of
October 2018 included more than 27,000 patients.

The derivation cohort and the CT-PIRP model
The derivation cohort consists of 2265 CKD patients en-
rolled in the PIRP project from April 1, 2004 to June 30,
2010 that were followed up for at least 6 months and
had at least four serum creatinine measurements
between their first visit and June 30, 2011. This cohort
was used to develop the CT-PIRP model, that is de-
scribed in detail in a previous paper [7]. In summary, a
classification tree analysis (CTA) was used to identify
homogeneous subgroups of eGFR annual decline based
on specific combinations of demographic and clinical
characteristics. Seven subgroups of patients (also defined
as nodes) with similar annual eGFR decline were identi-
fied by CTA as the result of the interactions of 6 variables
(Fig. 1): proteinuria (coded as present if dipstick protein
was > 20mg/dL, or urine total protein was > 0.3 g/24 h or
microalbuminuria was > 20mg/L), eGFR, serum phos-
phorus, age, diabetes and gender. The other variables sub-
mitted to the CTA analysis as potential predictors of
annual decline in eGFR were: hypertension, cardiac dis-
ease, smoking habits, diagnosis of nephropathy, and the
baseline values of BMI, serum creatinine, serum uric acid,
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parathyroid hormone, glycaemia, triglycerides, LDL chol-
esterol, haemoglobin. The subgroup membership is a
qualitative variable which embeds different patient charac-
teristics, and as such it cannot be used to create a risk
score and, moreover, the magnitude of the estimated
eGFR decline alone does not fully describe the risk related
to nodes.

The validation cohort
Temporal validation assesses the performance of a prog-
nostic model in a subsequent cohort of patients re-
cruited from the same data source. It is the simplest
form of external validation, is stronger than internal val-
idation [14] and is widely used to evaluate the perform-
ance of prognostic models [15–17]. Thus, using the
same inclusion criteria defined for the CT-PIRP model,
we obtained a validation cohort from patients who en-
tered the PIRP project between July 1, 2010 and Decem-
ber 31, 2016. Patients with complete data on the
variables used in the CT-PIRP algorithm reported in Fig.
1 were assigned to the subgroup matching their charac-
teristics. To enhance comparability of cohorts, we con-
ducted a 1:1 matching of the two cohorts based on node

membership and the time between the first and the last
visit, rounded off to months.

Outcomes
The outcomes of interest were inception of RRT (dialysis
or transplantation, with censoring of deaths) and all-cause
mortality observed until December 31, 2016. Hospital ad-
missions subsequent to patient enrolment in the PIRP pro-
ject up to April 30, 2017 were also analyzed. Information
on these outcomes was obtained through linkage of the
PIRP database with the hospital discharge record databases
and the mortality registry of Emilia-Romagna Region.

Statistical analysis
Patients’ characteristics of the derivation and validation
cohorts were compared using the χ2 test or
Mann-Whitney non-parametric test to take into account
the non-normality of the distributions of variables. Inci-
dence rate ratios (IRR) for RRT and mortality were used
to compare the incidence of outcomes between the two
cohorts.
The ability of the CT-PIRP model to predict mortality

and RRT initiation was investigated in the derivation

Fig. 1 Representation of the CT-PIRP Model. Rectangles indicate subgroups of patients; in each rectangle (corresponding to a node) the mean
annual estimated eGFR change is reported. The absolute and percentage frequency of each node are indicated over the arrows leading to it.
Reworked figure from Rucci et al. [7]
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cohort using survival analysis at 6 years of follow-up. Sub-
jects were censored on December 31, 2016 or at the date
when a competing event occurred (RRT/death, loss to
follow-up). Time to death or RRT inception was calcu-
lated for each subgroup using Kaplan-Meier (KM) esti-
mate, starting at 6months after enrolment (the minimum

required follow-up time). To further evaluate the severity
of illness in the subgroups of patients, the mean number
of prescribed drugs (all ATC codes) and the annual num-
ber of hospital admissions after entering the PIRP project
were compared across subgroups using ANOVA and
Kruskal-Wallis tests, followed by post-hoc comparisons.

Table 2 Comparison of the matched derivation and validation cohorts
Nodes

All nodes 1 2 3 4 5 6 7

N (%) D 2051 (100.0) 217 (10.6) 347 (16.9) 98 (4.8) 220 (10.7) 75 (3.7) 388 (18.9) 706 (34.4)

V 2051 (100.0) 217 (10.6) 347 (16.9) 98 (4.8) 220 (10.7) 75 (3.7) 388 (18.9) 706 (34.4)

eGFR change D −1.22;4.22 −2.27;5.19 −1.49;4.11 −3.25;4.72 −1.32;4.56 −1.79;5.31 −0.58;4.31 −0.86;4.15

(median; IQR) V −1.11;4.41 − 3.43;5.86 −2.09;4.27 − 2.00;4.94 − 0.76;4.04 − 1.11;5.17 −0.37;4.26 − 0.61;3.73

M-W test 0.7, p = .482 1.8, p = .080 1.8, p = .072 −1.2, p = .238 −1.8, p = .072 −2.1, p = .040 −0.5, p = .647 −0.8, p = .414

baseline eGFR D 27.1;16.1 42.7;13.9 23.3;10.4 17.5;10.4 31.3;23.1 30.6;16.9 24.2;11.6 28.0;15.5

(median; IQR) V 29.6;18.7 45.5;15.1 23.1;9.6 17.5;10.4 39.3;24.0 38.2;21.7 25.4;14.1 31.8;16.6

M-W test −6.0, p < .001 −2.2, p = .030 0.7, p = .490 −0.1, p = .922 −4.2, p < .001 −3.1, p = .002 −2.3, p = .023 −5.4, p < .001

PO4 D 3.70;0.90 3.50;0.90 3.70;0.70 4.90;0.80 3.70;1.00 4.00;1.00 3.90;0.75 3.50;0.90

(median; IQR) V 3.50;0.90 3.40;0.90 3.60;0.70 4.80;0.60 3.40;0.95 3.70;0.70 3.70;0.80 3.30;0.80

M-W test 7.5, p < .001 1.6, p = .111 2.9, p = .004 1.2, p = .223 3.6, p = <.001 2.7, p = .008 4.6, p < .001 4.7, p < .001

Age D 74.0;14.0 67.0;16.9 72.9;14.9 66.5;19.9 58.6;16.1 63.5;7.7 78.5;9.4 78.3;9.0

(median; IQR) V 74.8;13.0 68.5;16.4 75.0;13.2 72.8;16.8 59.9;15.4 63.0;8.9 78.5;8.9 77.5;8.7

M-W test −1.7, p = .085 −1.5, p = .137 −2.3, p = .019 −2.0, p = .043 −1.3, p = .182 1.0, p = .297 −1.0, p = .300 1.2, p = .238

Diabetes D 668 (32.6) 98 (45.2) 129 (37.2) 48 (48.9) 0 (0) 73 (100.0) 110 (28.3) 208 (29.5)

n(%) V 782 (38.1) 118 (54.4) 164 (47.0) 47 (48.0) 0 (0) 73 (100.0) 144 (37.1) 235 (33.3)

χ2 test 13.9, p = <.001 3.7, p = .055 6.8, p = .009 0.02, p = .886 – – 6.8, p = .009 2.4, p = .121

Male gender D 1340 (65.3) 161 (74.2) 235 (67.7) 49 (50.0) 139 (63.2) 50 (66.7) 0 (0) 694 (100.0)

n(%) V 1372 (66.9) 170 (78.3) 246 (70.9) 47 (48.0) 147 (66.8) 56 (74.7) 0 (0) 694 (100.0)

χ2 test 1.1, p = .291 1.0, p = .310 0.8, p = .365 0.1, p = .775 0.6, p = .424 1.2, p = .282 – –

Abbreviations: D = derivation cohort; V = validation cohort; M-W test = Mann-Whitney test
Missing data were found only in the serum phosphate variable (19.4% in the derivation cohort, 19.8% in the validation cohort)

Table 1 Characteristics of the derivation cohort
Nodes

All nodes 1 2 3 4 5 6 7

N (%) 2265 (100.0) 230 (10.1) 378 (16.1) 152 (4.4) 264 (10.9) 90 (3.9) 410 (19.3) 741 (35.2)

eGFR change, mean ± sd −1.33 ± 5.16 −3.66 ± 6.44 − 1.37 ± 4.29 − 2.83 ± 4.05 − 1.34 ± 3.89 − 2.97 ± 6.31 .06 ± 7.02 −.84 ± 3.85

baseline eGFR, mean ± sd 29.0 ± 13.1 46.7 ± 13.3 23.2 ± 6.3 18.9 ± 6.8 34.0 ± 16.6 31.9 ± 14.4 24.5 ± 9.0 28.9 ± 10.9

PO4, mean ± sd 3.83 ± .83 3.60 ± .72 3.62 ± .47 5.10 ± .71 3.80 ± .88 3.99 ± .65 4.03 ± .82 3.59 ± .71

Age, mean ± sd 71.2 ± 12.9 63.8 ± 14.4 70.3 ± 13.0 65.7 ± 13.9 54.9 ± 11.7 61.1 ± 6.1 78.6 ± 6.0 78.2 ± 5.8

Diabetes, n(%) 739 (32.6) 104 (45.2) 141 (37.3) 67 (44.0) 0 (0) 90 (100.0) 118 (28.8) 219 (29.6)

Male gender, n(%) 1475 (65.1) 170 (73.9) 259 (68.5) 73 (48.0) 171 (64.8) 61 (67.8) 0 (0) 741 (100.0)

Number of drugs prescribed, mean ± sda 8.02 ± 3.26 8.18 ± 3.0 8.84 ± 2.9 8.91 ± 2.6 6.44 ± 3.1 8.44 ± 3.9 8.24 ± 3.4 7.76 ± 3.3

Annual number of hospital admissions, median; IQRb 0.69; 0.78 0.67; 0.86 0.81; 0.89 1.09; 1.06 0.49; 0.80 0.94; 1.02 0.60; 0.67 0.67; 0.69

RRT events, n(%) 536 (23.8) 40 (17.4) 122 (32.3) 91 (60.7) 82 (31.2) 27 (30.0) 60 (14.6) 115 (15.6)

Deaths, n(%) 657 (29.0) 36 (15.7) 105 (27.8) 36 (24.0) 18 (6.8) 21 (23.3) 147 (35.9) 294 (39.8)

Event-free median survival time (years) 5.20 6.00 4.46 2.05 6.00 5.22 5.13 5.18

Node ranking (RRT/death) −−/−− +/+ ++/+ +/−− +/− −−/+ −−/+

Abbreviations: sd = standard deviation, IQR = interquartile range
a ANOVA post-hoc comparisons: node 4 < all other nodes; node 7 < nodes 2, 3
b Conover-Iman test post-hoc comparison with Holm adjustment: node 3 > nodes 1, 2, 4, 6, 7; nodes 2, 5 > nodes 1, 4, 6, 7; nodes 1, 7 > 4
+ high risk, ++very high risk, − low risk, −- very low risk
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We assigned each node a qualitative ranking based on the
comparison of RRT and death risks estimated by Cox re-
gression analyses. Very low risk was assigned when HR
was less than 0.5, low risk for 0.5 < HR < 0.8, high risk
when 0.8 <HR < 1.5 and very high risk when HR > 2.
The CT-PIRP model was validated in terms of discrim-

ination and calibration. Discrimination refers to the
model’s ability to identify substantially different risk pro-
files, while calibration indicates the predictive accuracy
of the risk estimates obtained from the model [14]. As
the CT-PIRP does not provide a risk score, we applied
validation criteria specific for risk groups. Specifically, to
evaluate discrimination we estimated RRT and mortality
Kaplan-Meier survival curves of the CT-PIRP subgroups
and verified whether these curves were well separated,
which indicates good discrimination [18]. Both outcomes
were treated as competing, applying censoring if the
other outcome occurred. To evaluate calibration, we
graphically compared the observed and the expected
Kaplan-Meier survival curves of CT-PIRP subgroups,
which should be overlapping if the model is well

calibrated. The expected Kaplan-Meier curves were esti-
mated based on the assumption that the baseline sur-
vival functions of the derivation and validation cohorts
should be similar. Thus, we first estimated the baseline
survival function in the derivation cohort using a Cox
model with subgroup indicators as predictors; then we
determined the population-average prediction in the val-
idation cohort, by assigning to each node the corre-
sponding baseline survival function estimated in the
derivation cohort [19]. In addition, we fitted
cause-specific Cox proportional hazards models for RRT
and mortality in which subgroup membership, the co-
hort indicator and their interaction were included as
predictors [20]. We expected to find some significant
main effect of nodes (thus identifying high- or low-risk
subgroups), possibly a significant main effect of cohort
(highlighting heterogeneity in the baseline risk), but no
significant interaction terms, indicating that subgroups
were well discriminated regardless of the cohort of ori-
gin. The node with the largest number of outcome
events was used as reference group. Robust standard

Fig. 2 Kaplan-Meier curves of the 4-year risk of RRT initiation and mortality for the nodes of the CT-PIRP model. Panel a: RRT in the derivation
cohort. Panel b: RRT in the validation cohort. Panel c: mortality in the derivation cohort. Panel d: mortality in the validation cohort. The nodes are
identified by the numbers placed upon the curves
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errors of hazard ratios were obtained using the sandwich
estimator to take into account patients’ clustering into
nephrology units. To balance the length of follow-up be-
tween the two cohorts and to reduce the possible influ-
ence of long-term survivors [21], both cohorts were
censored at 4 years of follow-up. The goodness of fit of
these models was compared with that of other univariate
Cox regression models using the baseline CKD-EPI stage
or the category of annual eGFR progression rate as pre-
dictors. Lastly, we estimated the competing risks of
death and RRT. This was done estimating the
sub-hazard functions for RRT, mortality and loss to
follow-up using the Fine and Gray model [22], and

comparing the corresponding cumulative incidence
function (CIF) for each node of both cohorts using
stacked cumulative incidence plots. CIF represents the
absolute risk for the event of interest in the presence of
competing risk. Furthermore it is considered the appro-
priate method to take into account competing risks in
prognostic models [23].
The validation process was reported according to the TRI-

POD statement checklist [14]. Stata v.15.1 was used for all
analyses; specifically, the user-written procedure stcoxgrp
[19] was used to calculate Kaplan-Meier survival estimates.

Results
Predictive ability of the CT-PIRP model in the derivation
cohort
The overall mean annual eGFR decline was − 1.33 ± 5.16
mL/min (Table 1); it was faster in nodes 1, 5 and 3
(− 3.66; − 2.97; − 2.83 mL/min respectively) and slower
in nodes 6 and 7 (0.06 and − 0.84 mL/min). The
Kaplan-Meier failure curves (Fig. 2a) show that Node 3
had the highest risk of RRT at 6 years (71.9%), while
nodes 1, 6 e 7 had similar low risks (around 19%) and
nodes 2, 4 and 5 risks ranged from 32.2 to 39.0%. Cox
regression hazard ratios (HR) of 2.93 (p < 0.001), 0.43
(p < 0.001), 0.43 (p < 0.001) and 0.45 (p = 0.005) were
found for nodes 3, 1, 6 and 7 compared to node 2
(proteinuria patients, with eGFR ≤33.652 and serum
phosphates ≤4.3 mg/dl). Mortality risk ranged between
41.1 and 49.1% for nodes 3, 6 and 7, was 35.7% for node
2, 30.0% for node 5 (Fig. 2c) and was lower for nodes 4
and 1 (9.1 and 18.0% respectively) The latter four nodes
showed a significantly lower mortality risk than node 7
(non-proteinuria, older, male patients) in Cox regression.
Event-free (death or RRT) median survival time varied
widely from the shortest (node 3: 2.05 years) to the
longest (nodes 1 and 4: 6.00 years). Patients of node 1
showed low mortality and RRT risks despite having the
fastest eGFR decline; the higher baseline eGFR (46.7
mL/min) and the younger age (63.8 years) of this group
might account for these results. Moreover, this group
was characterized by a higher proportion of patients
with diabetic nephropathies (20.9%) and glomeruloneph-
ritis (24.4%).

Matching and comparison of cohorts
The validation cohort comprised 3837 eligible patients,
of which 2051 were matched with the derivation cohort.
Matching was successful for each node in the two co-
horts (Table 2) but showed some significant differences.
Patients of the validation cohort had a 2.5 mL/min
higher median baseline eGFR and a higher percentage
with diabetes (38.1% vs 32.6%). eGFR change showed a
significant but modest difference between the two co-
horts only for node 5 (− 1.11 vs − 1.79 mL/min). The

Table 3 Results of the Cox proportional hazards regression on
time to death and time to RRT inception

HR (95% CI) p-value

Mortality

Validation cohort 1.085 (0.886–1.328) 0.429

1 0.298 (0.237–0.376) <0.001

2 0.932 (0.768–1.131) 0.476

3 1.379 (0.640–2.974) 0.412

4 0.122 (9.058–0.257) <0.001

5 0.604 (0.281–1.300) 0.197

6 0.989 (0.723–1.354) 0.945

7 Ref.

interactions

V 1 1.766 (0.948–3.291) 0.073

V 2 0.942 (0.721–1.230) 0.658

V 3 1.129 (0.480–2.655) 0.782

V 4 0.526 (0.107–2.587) 0.429

V 5 0.878 (0.285–2.710) 0.821

V 6 0.886 (0.553–1.418) 0.614

V 7 Ref.

RRT inception

Validation cohort 1.196 (0.705–2.029) 0.508

1 0.308 (0.208–0.455) <0.001

2 Ref.

3 3.848 (2.726–5.433) <0.001

4 0.876 (0.531–1.446) 0.605

5 0.948 (0.470–1.914) 0.882

6 0.395 (0.244–0.640) <0.001

7 0.442 (0.262–0.744) 0.002

interactions

V 1 0.765 (0.383–1.530) 0.449

V 2 Ref.

V 3 0.567 (0.247–1.301) 0.181

V 4 0.441 (0.257–0.756) 0.003

V 5 0.230 (0.080–0.663) 0.007

V 6 0.379 (0.155–0.929) 0.034

V 7 0.389 (0.183–0.827) 0.014
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validation cohort showed a significantly lower incidence
for RRT: IRR = 0.655 (95% CI: 0.553–0.773), which was
due to the lower IRRs in nodes 4, 5, 6 and 7. Mortality
was similar between the two cohorts except for node 7,
that showed a significantly lower IRR in the validation
cohort: IRR = 0.876 (95% CI: 0.767–0.999).

Temporal validation for RRT
The risk of RRT initiation at 4 years estimated in the val-
idation cohort using KM curves (Fig. 2b) proved to be
similar to that of derivation cohort, and it was highest
for node 3 (proteinuric patients with low eGFR and high
serum phosphate) (57.8%), and low for nodes 1 (6.7%), 6
(7.0%) and 7 (5.8%). In contrast to the derivation cohort,
node 2 (proteinuric patients with low eGFR and low
serum phosphate) appeared as a relatively high risk
group (33.7%), while nodes 4 and 5 had lower risk (12.3
and 9.2%). These findings were consistent with those ob-
tained using the Cox regression (Table 3) in which node
3 was at higher risk (HR = 3.848, p < .001), nodes 1, 6
and 7 had significantly lower hazard ratios ranging from
0.308 to 0.442, and nodes 4 and 5 had similar survival

than node 2, used as reference. Significant cohort X
node interactions were found for nodes 4, 5, 6 and 7, in-
dicating that in those subgroups the estimated risk was
lower in the validation cohort. Calibration was not com-
pletely satisfactory, because nodes 1, 2 and 6 showed
similar survival estimates (Fig. 3), while in the remaining
nodes (nodes 3, 4, 5 and 7) observed and expected esti-
mates diverged after 2 years of follow-up.

Temporal validation for mortality
The KM curves estimated in the validation cohort for
mortality (Fig. 2d) had the same rank as those in the
derivation cohort: node 4 had the lowest risk (4.2% mor-
tality at 4 years) followed by nodes 5 (12.3%) and 1
(14.0%); nodes 2, 6 and 7 showed risks between 24.0 and
28.8%, while node 3 had the highest risk (49.5%). Cox re-
gression was performed using node 7 as the reference
(Table 3) and provided significant lower risks for node 4
(HR = 0.122, p < .001) and node 1 (HR = 0.298, p < .001).
No significant interactions were found between nodes
and cohorts, indicating that HR estimates for nodes were
consistent across cohorts. Calibration was very good,

Fig. 3 Calibration plots for the mortality and RRT initiation. For each node, lines indicate the predicted survival obtained from the Cox proportional
hazard model with nodes as predictors and markers with confidence intervals indicate the observed Kaplan-Meier survival in the validation cohort
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because expected and predicted survival overlapped al-
most always perfectly (Fig. 3).
Competing risk analysis showed that the cumulative

risks of adverse outcomes (CIFs) were very similar be-
tween the derivation and validation cohorts for all nodes
except nodes 4 and 5, in which the estimated risk for
RRT inception was lower in the validation cohort
(Table 4 and Fig. 4).

The comparison of the goodness of fit indices of uni-
variate Cox regression models using CT-PIRP nodes,
baseline CKD-EPI stage and categories of eGFR progres-
sion rate is shown in Table 5. The CT-PIRP model fit
was better than the CKD-EPI model for RRT and better
than the eGFR progression rate for death.

Discussion
This study provides evidence on the validity of CT-PIRP
model in identifying subgroups of CKD patients with
different risks of inception to RRT and death. In particu-
lar, patients with proteinuria, low baseline eGFR and
high serum phosphate had the highest risk of both RRT
initiation and death (node 3). On the contrary, older pa-
tients without proteinuria (nodes 6 and 7) had a rela-
tively high risk of death and a low risk of initiating RRT.
The lower mortality risk was found in non-proteinuric,
younger, non-diabetic patients (node 4).
The model is extremely well calibrated for the mortality

outcome, while calibration for RRT inception is poorer. In
fact, the prediction of RRT for nodes 4 and 5 is not very ac-
curate, because of the lower number of dialysis events ob-
served in the validation cohort. Patients belonging to nodes
4 and 5 had a shorter follow-up time and a different
case-mix, with higher eGFR at baseline. It is likely that with
a longer follow-up the prediction accuracy of the risk of
RRT initiation would improve.
Two of the six variables included in the model, eGFR and

the presence of proteinuria, are widely recognized as key risk
modifiers of adverse renal outcomes [8, 10, 24–28]. The use
of eGFR change as a much better predictor of adverse renal
outcomes than the absolute GFR value has been advocated
by several authors [26, 27, 29, 30] based on the assumption
that incorporates the effect of pharmaceutical-dietary treat-
ment [31–34] and of physiological factors such as the re-
duced muscle mass associated with chronic illness [25, 27].
In CT-PIRP, mean eGFR change is not explicitly specified as
a model parameter, however it should be seen as embedded
into the definition of subgroups.
The original feature of the model is that patients are

stratified through empirically-based classification criteria
and not by a priori grouping, that is common practice in
CKD prognostic models [10, 26, 27, 29, 30]. The
CT-PIRP model does not assign individual patients a nu-
merical risk score, but rather identifies clinical pheno-
types characterized by specific interactions of six
baseline variables that may guide nephrologists towards
an accurate and focused examination of patients.
The CT-PIRP model is a practical tool for nephrolo-

gists, because it allows them to identify patient sub-
groups at greater risk of experiencing renal failure and
death at 4 years from their first evaluation (Nodes 2 and
3). In these patients, treatment compliance, diet

Table 4 Results of the Fine and Gray competing risk survival
analysis on time to death and time to RRT inception

SHR (95% CI) p-value

Mortality

Derivation cohort (ref) 1

Validation cohort 1.116 (0.911–1.365) 0.289

node

1 0.306 (0.247–0.379) <0.001

2 0.855 (0.715–1.023) 0.087

3 0.756 (0.380–1.507) 0.427

4 0.115 (0.054–0.245) <0.001

5 0.565 (0.274–1.165) 0.122

6 0.982 (0.736–1.312) 0.905

7 (ref) 1

interactions

V 1 1.702 (0.925–3.132) 0.088

V 2 0.872 (0.667–1.139) 0.314

V 3 1.258 (0.587–2.698) 0.555

V 4 0.526 (0.109–2.533) 0.424

V 5 0.930 (0.303–2.856) 0.900

V 6 0.873 (0.568–1.341) 0.534

V 7 (ref) 1

RRT

1

Validation cohort 1.162 (0.685–1.971) 0.576

node

1 0.334 (0.226–0.493) <0.001

2 (ref) 1

3 3.441 (2.537–4.666) <0.001

4 0.975 (0.581–1-637) 0.924

5 1.002 (0.515–1.951) 0.996

6 0.391 (0.244–0.626) <0.001

7 0.441 (0.263–0.740) 0.002

interactions

V 1 0.754 (0.380–1.499) 0.421

V 2 (ref) 1

V 3 0.572 (0.253–1.294) 0.180

V 4 0.442 (0.253–0.774) 0.004

V 5 0.229 (0.080–0.656) 0.006

V 6 0.383 (0.156–0.936) 0.035

V 7 0.389 (0.180–0.842) 0.017
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adherence and interventions on modifiable risk factors
need to be enhanced and RRT can be timely planned.
Conversely, most patients at low risk of renal failure

but high risk of death (nodes 6 and 7) will require
greater attention in the treatment of death risk factors,
in particular modifiable cardiovascular risk factors.
Introducing the CT-PIRP prediction tool into clinical
practice can facilitate a more personalized therapeutic
approach [35].
A recent systematic review [36] pointed out that pre-

diction models are often impractical because they re-
quire predictors rarely used in clinical practice or they
lack the information necessary to perform the external
validation. The CT-PIRP model does not suffer from
these limitations, because the requested information is
routinely collected in clinical practice and patients are
assigned to the subgroups on the basis of their
characteristics.
The development of different tools to identify sub-

groups of patients at highest risk of adverse renal out-
comes that need targeted assessment and interventions
has been encouraged [3, 25]. The CT-PIRP model fills

the gap of the lack of predictive models for renal adverse
outcomes developed in Mediterranean countries where
healthcare system is mainly public and an integrated
care pathway is implemented.
Our findings should be interpreted in light of some

important limitations. Only patients with at least four
visits and 6 months of follow-up were included in the
model’s development, precluding the assessment of its
prognostic accuracy in patients who rapidly reached an
endpoint. The follow-up time in the validation cohort
was relatively short to accurately detect the outcomes of
interest in slowly progressing patients. CT methodology
suffers from a limitation related to the instability of the
classifier: small changes in the data may modify a tree
because, if a split changes, the branches deriving from
the affected node change as well. Moreover, CT is a
non-parametric method that is not grounded on specific
statistical assumptions and as such its decision-making
procedure is algorithmic rather than statistical [37]. As a
consequence, in contrast to traditional statistical model-
ling methods, CT do not provide scores and confidence
intervals [38].

Fig. 4 Cumulative incidence functions of RRT, mortality and loss to follow-up for each node in the matched derivation and validation cohorts
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It follows that the comparison of the predictive ability
of CT-PIRP with that of other traditional prognostic
models based on risk scores is not straightforward [39].
The comparison of CT-PIRP model with univariate
models based on stratification variables such as baseline
CKD-EPI stage and classes of eGFR decline showed that
the CT-PIRP nodes predict RRT better than the
CKD-EPI stages and predict mortality better than the
eGFR progression rate.

Conclusions
The CT-PIRP is a promising simple prognostic model
that provides an effective clinical stratification of CKD
patients into subgroups at different risk of mortality and
RRT, using only six variables, easily available in the
current clinical practice. Thus the CT-PIRP model is ap-
plicable to most patients commonly seen in the nephrol-
ogy clinics and may inform policy makers on the
allocation of resources and support clinicians in the
identification of patients who require a differential moni-
toring targeted to their risk level.
Future perspectives might include an external valid-

ation to confirm the predictive performance of the
model in independent datasets.

Abbreviations
CKD: Chronic Kidney Disease; CT: Classification Tree; CT-PIRP: Classification
Tree model derived from the PIRP cohort; eGFR: estimated Glomerular
Filtration Rate; HR: Hazard Ratio; IRR: Incidence Rate Ratio; KM: Kaplan-Meier;
PIRP: Progetto Insufficienza Renale Progressiva (Progressive Renal
Insufficiency Project); RRT: Renal Replacement Therapy

Acknowledgements
The authors are grateful to the Nephrologists’ PIRP Group for their valuable
contribution in collecting the data used for the present study: Roberto
Scarpioni, Sara De Amicis (Piacenza), Salvatore David, Chiara Cantarelli
(Parma), Maria Cristina Gregorini (Reggio Emilia), Decenzio Bonucchi,
Francesco Caruso (Carpi), Giovanni Cappelli, Fabio Olmeda (Modena),
Gaetano La Manna, Daniela Cecilia Cannarile, Catia Orrico (Bologna),
Concetta Fantinati (Imola), Alda Storari (Ferrara), Andrea Buscaroli (Ravenna),
Giovanni Mosconi, Maria Laura Angelini (Forlì), Benedetta Ferri (Cesena),
Angelo Rigotti, Marta Flachi (Rimini).

Funding
The PIRP Project and the maintenance of the PIRP database are funded by
the Emilia-Romagna Regional Health Authority, however no specific funding
was supplied for the current study.

Availability of data and materials
The datasets used and analysed during the current study are available from
the corresponding author on reasonable request.

Authors’ contributions
DG and PR originally conceived the design of the study, subsequently
refined by AS and MM. MM, MC, DM, GR and EM collected the data. DG and
PR analyzed the data. DG, PR, AS and MM wrote the draft manuscript, which
was reviewed, amended and approved by all authors. All authors read and
approved the final manuscript.

Ethics approval and consent to participate
The study was exempt from approval from the Ethics Committee of Emilia-
Romagna. It was conducted in conformity with the regulations for data man-
agement from the Regional Health Authority of Emilia-Romagna, and with
the Italian Code of conduct and professional practice applying to processing
of personal data for statistical and scientific purposes (art. 20–21, legislative
decree 196/2003; https://www.garanteprivacy.it/documents/10160/0/Codice
+in+materia+di+protezione+dei+dati+personali+%28Testo+coordinato%29)
published in the Official Journal no. 190 of August 14, 2004, which explicitly
exempts the need for approval from the Ethics Committee when using an-
onymous data (Preamble number 8).
In Italy, anonymous administrative data-gathering is subject to the law Pro-
tection of individuals and other subjects with regard to the processing of
personal data, ACT no. 675 of 31.12.1996 (amended by Legislative Decree no.
123 of 09.05.1997, no. 255 of 28.07.1997, no. 135 of 08.05.1998, no. 171 of
13.05.1998, no. 389 of 6.11.1998, no. 51 of 26.02.1999, no. 135 of 11.05.1999,
no. 281 of 30.07.1999, no. 282 of 30.07.1999 and no. 467 of 28.12.2001)
(https://www.garanteprivacy.it/web/guest/home/docweb/-/docweb-display/
docweb/28335).
Patients enrolled in the PIRP project provide written consent to use their
anonymized data.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Biomedical and Neuromotor Sciences, University of Bologna,
Bologna, Italy. 2Nephrology and Dialysis Unit, Ospedale S. Maria della
Scaletta, Via Montericco, 4, 40026 Imola, Italy. 3Nephrology and Dialysis Unit,
Ospedale S.Maria Nuova, Reggio Emilia, Italy. 4Nephrology and Dialysis Unit,
Ospedale S.Maria delle Croci, Ravenna, Italy. 5Nephrology and Dialysis Unit,
Ospedale S.Anna, Ferrara, Italy. 6Nephrology, Dialysis and Hypertension Unit,
Policlinico S.Orsola-Malpighi, Bologna, Italy.

Received: 1 December 2018 Accepted: 18 April 2019

References
1. O’Callaghan CA, Shine B, Lasserson DS. Chronic kidney disease: a large-scale

population-based study of the effects of introducing the CKD-EPI formula
for eGFR reporting. BMJ Open. 2011;1:–e000308.

2. Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS, et al.
Global prevalence of chronic kidney disease: a systematic review and meta-
analysis. PLoS One. 2016;11:e0158765.

3. Collister D, Ferguson T, Komenda P, Tangri N. The patterns, risk factors, and
prediction of progression in chronic kidney disease: a narrative review.
Semin Nephrol. 2016;36:273–82.

Table 5 Goodness of fit comparison of univariate Cox
regression models on time to death and time to RRT inception

Model Degrees of freedom AIC BIC

Models on time to RRT

CT-PIRP nodes 6 5604.325 5641.946

Baseline CKD-EPI stage 4 5638.086 5663.167

eGFR progression rate 4 5508.584 5533.665

Models on time to death

CT-PIRP nodes 6 9427.045 9464.667

Baseline CKD-EPI stage 4 9360.737 9385.818

eGFR progression rate 4 9539.411 9564.492

Gibertoni et al. BMC Nephrology          (2019) 20:177 Page 10 of 11

https://www.garanteprivacy.it/documents/10160/0/Codice+in+materia+di+protezione+dei+dati+personali+%28Testo+coordinato%29
https://www.garanteprivacy.it/documents/10160/0/Codice+in+materia+di+protezione+dei+dati+personali+%28Testo+coordinato%29
https://www.garanteprivacy.it/web/guest/home/docweb/-/docweb-display/docweb/28335
https://www.garanteprivacy.it/web/guest/home/docweb/-/docweb-display/docweb/28335


4. Tangri N, Kitsios GD, Inker LA, Griffith J, Naimark DM, Walker S, et al. Risk
prediction models for patients with chronic kidney disease: a systematic
review. Ann Intern Med. 2013;(8):596–603.

5. Tangri N, Inker LA, Hiebert B, Wong J, Naimark D, Kent D, et al. A dynamic
predictive model for progression of CKD. Am J Kidney Dis. 2017;69:514–20.

6. Schroeder EB, Yang X, Thorp ML, Arnold BM, Tabano DC, Petrik AF, et al.
Predicting 5-year risk of RRT in stage 3 or 4 CKD: development and external
validation. Clin J Am Soc Nephrol. 2017;12:87–94.

7. Rucci P, Mandreoli M, Gibertoni D, Zuccalà A, Fantini MP, Lenzi J, et al. A
clinical stratification tool for chronic kidney disease progression rate based
on classification tree analysis. Nephrol Dial Transplant. 2014;29:603–10.

8. Sud M, Tangri N, Pintilie M, Levey AS, Naimark DMJ. Progression to stage 4
chronic kidney disease and death, acute kidney injury and hospitalization
risk: a retrospective cohort study. Nephrol Dial Transplant. 2016;31:1122–30.

9. Chronic Kidney Disease Prognosis Consortium, Matsushita K, van der Velde
M, Astor BC, Woodward M, Levey AS, et al. Association of estimated
glomerular filtration rate and albuminuria with all-cause and cardiovascular
mortality in general population cohorts: a collaborative meta-analysis.
Lancet. 2010;375:2073–81.

10. Coresh J, Turin TC, Matsushita K, Sang Y, Ballew SH, Appel LJ, et al. Decline
in estimated glomerular filtration rate and subsequent risk of end-stage
renal disease and mortality. JAMA. 2014;311:2518–31.

11. Keith DS, Nichols GA, Gullion CM, Brown JB, Smith DH. Longitudinal follow-
up and outcomes among a population with chronic kidney disease in a
large managed care organization. Arch Intern Med. 2004;164:659–63.

12. Zhang A-H, Tam P, LeBlanc D, Zhong H, Chan CT, Bargman JM, et al.
Natural history of CKD stage 4 and 5 patients following referral to renal
management clinic. Int Urol Nephrol. 2009;41:977–82.

13. Santoro A, Gibertoni D, Rucci P, Mancini E, Bonucchi D, Buscaroli A, et al.
The PIRP project (Prevenzione Insufficienza Renale Progressiva): how to
integrate hospital and community maintenance treatment for chronic
kidney disease. J Nephrol. 2019. https://doi.org/10.1007/s40620-018-00570-2.

14. Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, Macaskill P, Steyerberg
EW, et al. Transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD): explanation and elaboration.
Ann Intern Med. 2015;162:W1.

15. McAllister KSL, Ludman PF, Hulme W, de Belder MA, Stables R, Chowdhary S, et al.
A contemporary risk model for predicting 30-day mortality following percutaneous
coronary intervention in England and Wales. Int J Cardiol. 2016;210:125–32.

16. Richardson A, Brearley S, Ahitan S, Chamberlain S, Davey T, Zujovic L, et al. Temporal
validation of a simplified blastocyst grading system. Hum Fertil. 2017;20:113–9.

17. Weismüller TJ, Lerch C, Evangelidou E, Strassburg CP, Lehner F, Schrem H,
et al. A pocket guide to identify patients at risk for chronic kidney disease
after liver transplantation. Transpl Int. 2015;28:519–28.

18. Royston P, Altman DG. External validation of a cox prognostic model:
principles and methods. BMC Med Res Methodol. 2013;13:33.

19. Royston P. Tools for checking calibration of a cox model in external
validation: prediction of population-averaged survival curves based on risk
groups. Stata J. 2015;15:275–91.

20. Steyerberg EW, Harrell FE. Prediction models need appropriate internal,
internal-external, and external validation. J Clin Epidemiol. 2016;69:245–7.

21. Valsecchi MG, Miller ME, Hui SL. Evaluation of long-term survival: use of
diagnostic and robust estimators with Cox’s proportional hazards model.
Stat Med 1996;15 July 1994:2763–2780.

22. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a
competing risk. J Am Stat Assoc. 1999;94:496–509. https://doi.org/10.1080/
01621459.1999.10474144.

23. Wolbers M, Koller MT, Stel VS, Schaer B, Jager KJ, Leffondre K, et al. Competing
risks analyses: objectives and approaches. Eur Heart J. 2014;35:2936–41.

24. Evans M, Grams ME, Sang Y, Astor BC, Blankestijn PJ, Brunskill NJ, et al. Risk
factors for prognosis in patients with severely decreased GFR. Kidney Int
Reports. 2018;3:625–37.

25. Turin TC, Hemmelgarn BR. Change in kidney function over time and risk for
adverse outcomes: is an increasing estimated GFR harmful? Clin J Am Soc
Nephrol. 2011;6:1805–6.

26. Matsushita K, Selvin E, Bash LD, Franceschini N, Astor BC, Coresh J. Change
in estimated GFR associates with coronary heart disease and mortality. J Am
Soc Nephrol. 2009;20:2617–24.

27. Turin TC, Coresh J, Tonelli M, Stevens PE, De Jong PE, Farmer CKT, et al.
One-year change in kidney function is associated with an increased
mortality risk. Am J Nephrol. 2012;36:41–9.

28. Nitsch D, Grams M, Sang Y. Associations of estimated glomerular filtration
rate and albuminuria with mortality and renal failure by sex: a meta-analysis.
BMJ. 2013;324 January:1–14. doi:https://doi.org/10.1136/bmj.f324.

29. Shlipak MG, Katz R, Kestenbaum B, Siscovick D, Fried L, Newman A, et al.
Rapid decline of kidney function increases cardiovascular risk in the elderly.
J Am Soc Nephrol. 2009;20:2625–30. https://doi.org/10.1681/ASN.
2009050546.

30. Perkins RM, Bucaloiu ID, Kirchner HL, Ashouian N, Hartle JE, Yahya T. GFR
decline and mortality risk among patients with chronic kidney disease. Clin
J Am Soc Nephrol. 2011;6:1879–86.

31. Ragot S, Saulnier P-J, Velho G, Gand E, de Hauteclocque A, Slaoui Y, et al.
Dynamic changes in renal function are associated with major cardiovascular
events in patients with type 2 diabetes. Diabetes Care. 2016;39:1259–66.

32. Rosansky SJ. Renal function trajectory is more important than chronic
kidney disease stage for managing patients with chronic kidney disease.
Am J Nephrol. 2012;36:1–10.

33. Richards N, Harris K, Whitfield M, O’Donoghue D, Lewis R, Mansell M, et al.
Primary care-based disease management of chronic kidney disease (CKD),
based on estimated glomerular filtration rate (eGFR) reporting, improves
patient outcomes. Nephrol Dial Transplant. 2008;23:549–55. https://doi.org/
10.1093/ndt/gfm857.

34. Bayliss EA, Bhardwaja B, Ross C, Beck A, Lanese DM. Multidisciplinary team
care may slow the rate of decline in renal function. Clin J Am Soc Nephrol.
2011;6:704–10. https://doi.org/10.2215/CJN.06610810.

35. Grams ME, Coresh J. Predicting risk of RRT in patients with CKD. Clin J Am
Soc Nephrol. 2017;12:3–4. https://doi.org/10.2215/CJN.11841116.

36. Ramspek C, Voskamp P, van Ittersum F, Krediet R, Dekker F, van Diepen M.
Prediction models for the mortality risk in chronic dialysis patients: a
systematic review and independent external validation study. Clin
Epidemiol. 2017;9:451–64.

37. Lemon SC, Roy J, Clark MA, Friedmann PD, Rakowski W. Classification and
regression tree analysis in public health: methodological review and
comparison with logistic regression. Ann Behav Med. 2003;26:172–81.

38. Kuhn L, Page K, Ward J, Worrall-Carter L. The process and utility of
classification and regression tree methodology in nursing research. J Adv
Nurs. 2014;70:1276–86.

39. Brims FJH, Meniawy TM, Duffus I, de Fonseka D, Segal A, Creaney J, et al.
A novel clinical prediction model for prognosis in malignant pleural
mesothelioma using decision tree analysis. J Thorac Oncol. 2016;11:573–82.

Gibertoni et al. BMC Nephrology          (2019) 20:177 Page 11 of 11

https://doi.org/10.1007/s40620-018-00570-2
https://doi.org/10.1080/01621459.1999.10474144
https://doi.org/10.1080/01621459.1999.10474144
https://doi.org/10.1136/bmj.f324
https://doi.org/10.1681/ASN.2009050546
https://doi.org/10.1681/ASN.2009050546
https://doi.org/10.1093/ndt/gfm857
https://doi.org/10.1093/ndt/gfm857
https://doi.org/10.2215/CJN.06610810
https://doi.org/10.2215/CJN.11841116

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Data source
	The derivation cohort and the CT-PIRP model
	The validation cohort
	Outcomes
	Statistical analysis

	Results
	Predictive ability of the CT-PIRP model in the derivation cohort
	Matching and comparison of cohorts
	Temporal validation for RRT
	Temporal validation for mortality

	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

