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Abstract

with kidney disease is not clear.

polymorphism.

significant.

Background: A chronic inflammatory state is a prominent feature in patients with end-stage renal disease (ESRD).
Nuclear factor-kappa B (NF-kB) is a transcription factor that regulates the expression of genes involved in inflammation.
Some genetic studies have demonstrated that the NF-kB genetic mutation could cause kidney injury and kidney
disease progression. However, the association of a gene polymorphism in the transcription factor binding site of NF-xB

Methods: We used the Taiwan Biobank database, the University of California, Santa Cruz, reference genome, and a
chromatin immunoprecipitation sequencing database to find single nucleotide polymorphisms (SNPs) at potential
binding sites of NF-kB. In addition, we performed a case—control study and genotyped 847 patients with ESRD and 846
healthy controls at Tri-Service General Hospital from 2015 to 2016. Furthermore, we used the ChlP assay to identify the
binding activity of different genotypes and used Luciferase reporter assay to examine the function of the rs9395890

Result: The results of biometric screening in the databases revealed 15 SNPs with the potential binding site of NF-kB.
Genotype distributions of rs9395890 were significantly different in ESRD cases and healthy controls (P = 0.049). The ChIP
assay revealed an approximately 1.49-fold enrichment of NF-kB of the variant type TT when compared to that of the
wild-type GG in rs9395890 (P=0.027; TT=3.20+0.16, GT =281+ 020, GG = 1.71 + 0.18). The luciferase reporter assay
showed that the NF-kB binding site activity in T allele was slightly higher than that in G allele, though it is not

Conclusions: Our findings indicate that rs9395890 is associated with susceptibility to ESRD in Taiwan population.

Keywords: Nuclear factor-kappa B (NF-kB), End-stage renal disease (ESRD), Single nucleotide polymorphisms (SNPs)

Background

According to the United States Renal Data System an-
nual report, the incidence and prevalence of end-stage
renal disease (ESRD) in Taiwan are among the highest in
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the world [1, 2]. Taiwan has a 9.8% prevalence of chronic
kidney disease (CKD) [3]. The incidence of ESRD in
Taiwanese individuals is 450 per million people [2, 4].
CKD-related and ESRD-related costs in Taiwan are
US$25,576 per patient-year [5]. CKD development and
progression to ESRD involve complex interactions be-
tween multiple genetic and environmental factors [6].
Chronic inflammation is an important component of
CKD and ESRD. It has a unique role in their pathophysi-
ology and contributes to cardiovascular and all-cause
mortality, as well as the development of protein-energy
wasting [7, 8]. Genetic factors are important risk factors
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in the pathogenesis of CKD. The heritability of ESRD is
31.1% in the Taiwanese population [9].

Nuclear factor-kappa B (NF-«B) is an important tran-
scription factor in inflammation and promotes the ex-
pression of genes involved in inflammation, such as
cytokines and adhesion molecules. NF-kB comprises a
family of dimeric transcription factors that regulate the
expression of numerous genes involved in inflammation
and cell proliferation [10].

NF-kB pathways are activated after a potent stimulus
from members of the interleukin-1 and tumor necrosis
factor superfamilies or lipopolysaccharides, which rapidly
degrade IkB within minutes. Degradation of IkB releases
NE-«B. After NF-kB is activated, it moves into the nucleus
and induces transcription and expression of specific genes,
resulting in inflammation, apoptosis, cell proliferation and
differentiation, possibly leading to CKD [11-18].

Several studies have shown that inhibitors of NF-«xB
activation can regulate the inflammatory response of
glomerular mesangial cells [19]. The pathogenesis of
glomerular mesangial cell inflammation in patients with
kidney disease has been associated with NF-«B activa-
tion [20]. A recent study showed that when patients with
kidney disease have proteinuria, the NF-«B inflammatory
reaction and expression of proinflammatory genes are
accelerated [21-23].

Some genetic studies have shown the association of NF-
KB genetic mutations with kidney failure and kidney disease
progression [10, 24, 25]. NF-kB is an important transcrip-
tion factor in inflammation. The polymorphisms in NF-kB
transcription binding sites have yet to be identified. There-
fore, we used bioinformatics technology and the Taiwan
Biobank and chromatin immunoprecipitation sequencing
(ChIP-Seq) databases to find NF-kB transcription binding
site polymorphisms in a Han population. We then per-
formed a case—control study to investigate the association
between the polymorphisms and ESRD.

Methods

Bioinformatics analysis in the screening of gene

processes

We performed a three-step process for screening of genes

(Fig. 1).

Screening of genetic variation in a Taiwanese population
through a quality control program

First, we used the single nucleotide polymorphism (SNP)
database from the Taiwan Biobank. This database includes
58,917,994 SNPs and 997 next-generation sequencing
(NGS) samples. Then, we used a human reference genome
downloaded from the University of California, Santa Cruz
(UCSC; GRCh37/hgl19), and all SNPs within 500 kb up-
stream and downstream of each candidate SNP from the
UCSC genome browser (https://genome.ucsc.edu/). We

Page 2 of 13

deleted structural variants (insertion/deletion, deletion)
because there was no way to use the multifunctional mass
spectrometer (mass array) for genotyping. We kept the
remaining variants for study and deleted variants with a
call rate of less than 90% at the position. Finally, the
remaining SNPs were used for further alignment.

Sequence alignment techniques using bioinformatics
analysis of genetic variations that may affect NF-kB binding
Second, we analyzed genetic variants that may affect
NF-«B binding by using bioinformatics sequence align-
ment techniques and identified the variants located in
the transcription factor binding site (TFBS). Prior studies
have confirmed that the structure of NF-kB is a dimer
consisting of five different related structural proteins:
p50, p52, p65 (RelA), RelB, and c-Rel. The combination
of the p50 protein and the p65 protein is found [26-28]
in almost all cells; as a result, this study explored only
the heterodimer of p50/p65. In the past, the TFBS se-
quence of the identified transcription factor was 5'-
GGGRNNYYCC-3' (R=A or G;N=A,C, G orT; Y=
C or T). We aligned this motif in all 36,041,790 SNPs
and in its nearby sequences within 500 kb that included
this motif and found 40,137 SNPs that may affect the
binding activity.

Confirmation by ChiIP-Seq that these mutations bind to
these positions

Third, we further confirmed that these variations do
combine with these locations through ChIP-Seq. After
the above screening, we used the method of a previous
study on the human genome on the NF-kB ChIP-Seq for
analysis of the results of further screening [29]. The
study was performed using B cells for ChIP-Seq analysis
and analysis of the NF-kB five structural proteins of
TEBS and was published in the online Gene Expression
Omnibus (GEO) database (GSE55105). We extracted the
results of the p50-p65 dimer follow-up screening and
found a total of 5112 sequences with alignment to 15
SNPs.

Study subjects

Next, we conducted a case—control study to identify SNPs
related to the NF-kB binding site associated with ESRD.
In this study, we collected blood samples and social demo-
graphic data from patients admitted to the Tri-Service
General Hospital in Taipei, Taiwan, between 2015 and
2016 and then performed real-time polymerase chain re-
action (PCR) and genotyping.

We collected data from 847 hemodialysis (HD) pa-
tients (male, 50.8%; female, 49.2%; age, 71.84 + 12.93)
from the Tri-Service General Hospital in Taipei, Taiwan.
CKD was defined according to the Kidney Disease Out-
comes Quality Initiative definitions, and the estimated
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DNA motif alignment in
hgl9 genome sequence:
5'-GGGRNNYYCC-3'
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Fig. 1 The candidate SNPs screening process by biometrics for this study. First, we used a total of 58,917,994 SNPs (997 samples) in the Taiwan
Biobank database to screen for a Taiwanese-specific genetic variation. Then, through genetic alignment of GRCh37/hg19 from the NCBI, we found that
NF-kB (p50-p65) contained 271,063 potentials in the human genome based on the sequence of the above binding sites. Of the TFBSs, we compared
the remaining 36,041,790 SNPs in the first step and found that there were 3,121,467 SNPs around the 271,063 potential TFBSs, of which 40,137 SNPs
were even on the TFBS of NF-kB. Finally, we validated these with the results of the second stage through the ChIP-Seq database to further confirm
that these mutations do have a combination of these positions. The 15 SNPs variation may affect NF-kB binding activity

glomerular filtration rate (eGFR) was calculated using
the Modification of Diet in Renal Disease study equation
[30, 31]. Study patients were defined as having an eGFR
<15 mL/min/1.73 m*> with clinical signs of uremic syn-
drome requiring HD. All patients were over 20 years old
and had been on HD for more than 6 months. Patients
were excluded if they had autoimmune disease, malig-
nancy, or acute or chronic infection. Demographic data of
the HD patients included age, sex, diabetes, HD duration,
hypertension, education level, and blood biochemical
values (white and red blood cells, hemoglobin, blood urea
nitrogen [BUN], creatinine, albumin, proteinuria, blood
sugar AC, triglycerides, cholesterol, sodium, potassium,
calcium, phosphorus, and eGFR). The 846 healthy con-
trols (male, 44.6%; female, 55.4%; age, 73.50 + 7.21) had no
history of renal disease, and their eGFR was >60 mL/min/
1.73m>% The control group was composed from those
undergoing a physical examination at Tri-Service General
Hospital. The healthy controls had no microalbuminuria,

proteinuria, or hematuria and had normal abdominal/
renal ultrasonography findings.

Ethical statement

The study was reviewed and approved by the institutional
ethics committee of the Tri-Service General Hospital
(TSGH-1-104-05-006, TSGH-2-106-05-127). After full
explanation of the study, written informed consent was
obtained from all participants. All clinical and biological
samples were collected, and DNA was genotyped follow-
ing patient consent.

Genomic DNA extraction and genotyping

The blood samples were extracted from the laboratory by
phenol chloroform and stored in a — 20 °C refrigerator for
subsequent genotyping and experimental use. Genomic
DNA used standard procedures for proteinase K (Invitro-
gen, Carlsbad, CA, USA) digestion and phenol/chloroform
[32] peripheral blood sample separation; then, the samples
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were genotyped by iPLEX Gold SNP [33]. We assessed
the genotyping experiment quality by intrareplication
validation. The concordance rate of interreplication valid-
ation of 78 samples (approximately 5%) was 100%. Sec-
ondary genotyping was performed on 10 random blood
samples with PCR according to a previously described
protocol for intrareplication validation [34]. After geno-
typing replication was conducted twice, the concordance
rate was 100% between the two genotyping methods.

Chromatin immunoprecipitation assay and qPCR

We included 9 ESRD patients, GG (n=3), GT (n=3),
and TT (n=3), for the ChIP assay. ChIP assays were
conducted by using the ChIP Kit ab500 (Abcam, USA)
and NF-kB antibody (Proteintech) according to the
manufacturer’s instructions. The immunoprecipitate was
eluted with 100 ul DNA purifying slurry, and 2pl of
DNA was used in qPCR. Input DNA and NF-«B-
enriched DNA fragments were amplified by using qPCR
in a 7500 Fast Real-Time PCR System (Applied Biosys-
tems) with primers 5'-ATTCTCACCATGGGAATGG-3’
and 5’GAGGACAGCAAGGTAATAG-3". The results
are shown as percentage input.

Transient transfection and luciferase assay

NEF-«kB binding site SNP rs9395890 reporter (from 53820675
to 53821295, 620 bp) was amplified by polymerase chain
reaction from one home-made genomic DNA library with
the primer pair: 5: 5'-GGGGTACCGCATCTACGTTCTT
AAATGGCC-3" and 3": 5'-GGAAGATCTCCTACAGAA
CCATTACACTCTC-3" and subcloned into a pGL3 basal
reporter (Promega, USA) cut at Kpnl and BglII sites. After
the sequence verification, we further changed the current T
allele into G allele using the QuickChange Lightening Site-
directed mutagenesis kit (Agilent Technology). HEK293
cells were grown in Dulbecco’s modified Eagle’s medium
supplemented with 10% charcoal/dextran-treated fetal
bovine serum. The cells in each well (24-well plate) were
transfected with total 1 pg DNA and jetPEI (PolyPlus-trans-
fection, Illkirch, France) according to the manufacturer’s
protocol. Luciferase activity was assessed after 24 h post
transfection using the Promega Luciferase Assay kit and
expressed as mean relative light units (RLU) of two trans-
fected sets. Results shown are representative of at least three
independent experiments.

mRNA expression

We assessed the correlation between genetic variants
and mRNA expression of the corresponding genes. Ex-
pression quantitative trait loci (eQTL) analysis was also
performed using data from the GTEx portal database
(https://www.gtexportal.org/home/) and the HapMap
Project by a general linear regression model in an addi-
tive genetic model [35].
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Statistical analysis

Statistical analysis was performed with R software, ver-
sion 3.3.1 (R Project for Statistical Computing, Vienna,
Austria). Demographic and clinical data between the
groups were compared with Student’s ¢-test, and the re-
sults for continuous variables were given as the mean +
SD. The allele and genotype frequencies between the
different groups were compared with the x> test when
appropriate. The results of ChIP assay qPCR cycles were
compared with ANOVA. The genetic polymorphism of
ESRD risk was calculated using dominant/recessive
models. The odds ratios (ORs) and corresponding 95%
confidence intervals (Cls) for assessing the effect of the
genotype distribution, allele frequencies and binding site
activity on ESRD were calculated by logistic regression
analysis with adjustment for relevant significant vari-
ables. Statistical significance was defined at the 95% level
(P <0.05).

Results

Screening of genes

Next-generation sequencing

We screened for genetic variations in 997 samples from
the NGS database in the Taiwan Biobank to determine
the total number (58,917,994) of genetic variants in
Taiwanese genomes: 11,423,191 were structural variants
(insertion/deletion, deletion). There was no way to use
the multifunctional mass spectrometer (mass array) for
subsequent analysis, and thus we kept only the
remaining variants for further study. Therefore, a total
of 47,494,803 SNPs were analyzed in detail. Following a
quality control program that involved deleting variants
with a call rate of less than 90% at the position, 36,041,
790 SNPs remained; we then performed sequence align-
ment analysis.

National Center for biotechnology information

We downloaded the human reference gene sequence of
GRCh37/hg19 from the National Center for Biotechnol-
ogy Information (NCBI) in combination with the human
biological database in Taiwan and found that NF-«xB
(p50—p65) contained 271,063 potential variants in the
human genome based on the sequence of the above
binding sites. Of the TEBSs, we compared the remaining
36,041,790 SNPs in the first step and found that 3,121,
467 SNPs were near the 271,063 potential TFBSs, of
which 40,137 SNPs were even in the TEBS of NF-«B.
Additionally, mutation of this site will likely result in
NF-kB (p50—p65) being unable to bind. Finally, a total of
5766 SNPs with a minor allele frequency>5% were
screened for further follow-up by ChIP-Seq analysis due
to the limited number of samples subject to subsequent
analysis in this study [36].
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Table 1 The ChIP-Seq database found that these SNPs may affect NF-kB binding ability
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Chromosome: Location SNPs Call rate MAF DNA sequence near the SNP
1:11229433 1517036427 100.0% 807% (G—C) AAAGGCAGGIG/CJATTTTCCCC
1:19372561 rs79143300 99.7% 820% (G—T) CAATGTGGC[G/TIGGAATTTCC
2:203037846 rs76552560 99.5% 1346% (G— A) AAGTCCCCCIG/A]GGAAGTCCC
3:14693650 rs7651075 99.7% 49.40% (G— A) CCGTGGGTT[G/A]GGAAACTCC
6:44032378 rs59118205 99.7% 594% (C—T) GGGGTTTCC[C/TICACCATGAT
6:53820994 rs9395890 99.9% 4157% (T— Q) GTGACAGCT[T/GIGGAAGTCCC
11:30344883 1511826681 91.6% 4157% (C—G) CGTGAGGGGIC/GJATTTCCAGC
11:85506994 rs11234413 100.0% 9.73% (G—A) CATCACCAGIG/AIGGAATCTCC
11:94465585 rs2851583 99.9% 5.72% (A— Q) TTCTGAAGG[A/GIAAGTCCCTC
16:1275896 19925427 99.3% 12.58% (A — G) GCAGCGCCCIA/GIGGACTTTCC
16:81444782 rs78229468 95.5% 861% (A— Q) TGCTGCTGGIA/GIAAGTTCCTG
16:86553836 1577836284 99.9% 858% (C—T) GGGGATTTC[C/TICGCTCGGCT
17:34219824 153826454 99.8% 10.50% (A —T) CCCTTGGGGIA/TJATTTCCTCA
19:54398240 167087171 100.0% 11.53% (G— A) TAGAAGGGC[G/A]GGATTTCCC
22:29613441 157284245 99.7% 16.50% (G—T) CTTGGGCCGIG/TIGGACTTCCC

Gene expression omnibus

In the GEO database, there were 5112 positions in the
TEBS associated with the p50—p65 dimer. After validat-
ing these results with the results of the second stage, the
remaining 15 SNPs are shown in Table 1. For SNPs near
the DNA sequence, the SNP position as the center +9
base pairs (the bold font indicates NF-kB) was the ex-
pected TEBS. The 15 SNP variations may affect NF-xB
binding activity. Finally, we used 15 SNPs obtained from
the bioinformatics technology results and the ChIP-Seq
database to confirm the relationship with ESRD in this
study.

Table 2 Characteristics of ESRD patients and control subjects

Demographic characteristics

The characteristics of the 846 ESRD and 847 control
group subjects are presented in Table 2. The causes of
ESRD were diabetes mellitus (DM) in 215 patients
(25%), hypertensive nephropathy in 164 (19%), systemic
nephropathy in 252 (29%), and other and unknown
causes in 136 (16%). There was no significant difference
in body mass index. Significant differences in sex, age,
DM, hypertension, BUN, serum creatinine, GFR, blood
sugar AC, total cholesterol, and triglycerides were ob-
served between patients with ESRD and controls (P <
0.001).

Dependent Independent Control® ESRD® p-value
(n=2847) (n=847)
Male (%) 377 (44.6%) 430 (50.8%) 0.011%
Age (mean £ SD, year) 7350+ 7.21 7184+ 1293 0.001*
Diabetes mellitus (%) 105 (12.5%) 372 (80.3%) <0.001*
Hypertension (%) 358 (42.7%) 222 (81.3%) <0.001*
BMI® (mean + SD, kg/m? 2422+337 24.66+ 480 0420
Blood biochemical value (mean = SD)
BUN? (mg/dl) 1590+ 3.89 73.88+24.72 <0.001*
Creatinine (mg/dl) 083+0.72 942 +2.78 <0.001*
Blood sugar PC (mg/dl) 10248 + 25.20 14890 + 7540 <0.001*
Triglycerides (ma/dl) 103.62 +40.82 157.02 £98.75 <0001*
Cholesterol (mg/dl) 185.05+ 3335 16242 +£45.16 <0.001*
Glomerular filtration rate (GFR) (mL/min/1.73 m?) 93.81+£23.76 573+245 <0.001*

*p < 0.05

2: Control: GFR > 60; ®: Case: Hemodialysis patients, GFR < 15; : Body Mass Index; %: Blood urea nitrogen
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Table 3 Genotype distribution of NF-kB binding site SNPs with ESRD cases and control group
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SNPs Control (N=847) ESRD (N =847) Crude-OR (95% Cl) p-value Adj-OR (95% Cl) ° p-value
rs11826681C/G 0.385 0.251
cC 304 (35.9%) 288 (34.3%) 1.00 1.00

CG 421 (49.7%) 418 (48.9%) 1.03 (0.83-1.27) 0.798 1.00 (0.81-1.25) 0.970
GG 122 (14.4%) 141 (16.8%) 1.22 (091-1.63) 0.181 1.26 (0.94-1.70) 0.128
rs17036427G/C 0.825 0.826
GG 723 (85.4%) 718 (84.8%) 1.00 1.00

GC 119 (14.0%) 122 (14.4%) 1.03 (0.79-1.36) 0.819 1.00 (0.75-1.32) 0.990
CcC 5 (0.6%) 7 (0.8%) 141 (0.45-4.46) 0.559 144 (0.45-4.63)

rs59118205C/T 0624 0.905
CcC 745 (88.0%) 753 (89.0%) 1.00 1.00

TC 98 (11.6%) 92 (10.8%) 0.92 (0.68-1.24) 0.583 0.93 (0.68-1.27) 0.935
T 4 (0.5%) 2 (0.2%) 049 (0.09-2.71) 0417 1.09 (0.15-7.87) 0.662
1s7284245G/T 0234 0.220
GG 611 (72.3%) 582 (69.5%) 1.00 1.00

GT 211 (25.0%) 247 (28.4%) 1.18 (0.95-147) 0.127 1.15 (0.92-1.44) 0.210
T 23 (2.7%) 18 (2.1%) 0.82 (044-1.54) 0.539 0.70 (0.36-1.34) 0.278
rs7651075G/A 0.104 0.139
GG 219 (25.9%) 185 (22.0%) 1.00 1.00

AG 398 (46.9%) 440 (51.5%) 1.29 (1.02-1.64) 0.036 1.26 (0.99-1.61) 0.062
AA 230 (27.2%) 222 (26.4%) 1.14 (0.87-1.50) 0.331 0.12 (0.85-1.48) 0417
rs77836284C/T 0.775 0.662
CcC 703 (83.8%) 709 (84.4%) 1.00 1.00

TC 133 (14.9%) 130 (14.6%) 0.98 (0.74-1.28) 0.858 1.03 (0.78-1.36) 0.856
T 11 (1.3%) 8 (1.0%) 0.72 (0.29-1.80) 0484 0.65 (0.25-1.70) 0378
rs78229468A/G 0518 0.719
AA 697 (82.4%) 696 (82.3%) 1.00 1.00

GA 146 (17.1%) 143 (16.8%) 0.98 (0.76-1.26) 0.881 0.98 (0.75-1.27) 0.859
GG 4 (0.5%) 8 (0.9%) 2.00 (0.60-6.68) 0.258 1.65 (047-5.74) 0432
rs79143300G/T 0.668 0464
GG 737 (87.0%) 731 (86.3%) 1.00 1.00

GT 105 (12.4%) 113 (13.3%) 1.09 (0.82-1.44) 0574 1.11 (0.83-1.49) 0471
T 5 (0.6%) 3 (04%) 0.60 (0.14-2.54) 0492 043 (0.08-2.26) 0.321
rs9395890G/T 0.031* 0.049*
GG 153 (18.1%) 138 (16.4%) 1.00 1.00

GT 419 (49.5%) 379 (45.1%) 1.00 (0.77 to 1.31) 0.983 0.98 (0.75 to 1.29) 0.110
T 274 (32.4%) 324 (38.5%) 131 (0.99 to 1.74) 0.059 1.26 (0.95 to 1.68) 0.908
1s9925427A/G 0.902 0.826
AA 638 (77.2%) 665 (79.1%) 1.00 1.00

GA 208 (22.7%) 192 (20.9%) 0.95 (0.75-1.20) 0.650 0.93 (0.73-1.18) 0.537
GG 1 0 0.00 (0.00 - inf) 0.969 0.00 (0.00-inf) 0.969
*p <0.05

2 adjust: gender, age, BMI, Hypertension, DM
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Table 4 The allele frequency of 9395890 for the NF-kB binding site SNPs with ESRD cases and control group

SNPs Control (N=847) ESRD (N =847) Crude-OR (95% Cl) p-value Adj-OR (95% CI) * p-value
rs9395890

Allele model 0.008* 0.013*
G 725 (43%) 655 (39%) 1.00 1.00

T 967 (57%) 1027 (61%) 1.31 (1.07 to 1.60) 1.31 (1.06 to 1.62)

Dominant model 0.362 0.983
G 153 (18.1%) 138 (16.4%) 1.00 1.00

GT+T 693 (81.9%) 703 (83.6%) 1.12 (0.87 to 1.45) 0.362 1.00 (0.77 to 1.31) 0.983
Recessive model 0.008* 0.008*
G+GT 572 (67.6%) 517 (61.5%) 1.00 1.00

T 274 (32.4%) 324 (38.5%) 1.31 (1.07 to 1.60) 0.008* 1.31 (1.07 to 1.60) 0.008*
*p <0.05

2 adjust: gender, age, BMI, Hypertension, DM

Association analyses of NF-kB binding site gene
polymorphisms with susceptibility to ESRD

In the gene screening process, the call rate of all 15
SNPs was >90%, and the genotypes of these SNPs were
in Hardy—Weinberg equilibrium (P >0.05). When we
calculated our sample size, the power was >50% and the
OR was set at 1.5 to detect the real effects of expected
NF-kB binding site SNPs. Two SNPs were nonfrequency
SNPs under the allele model (rs2851583, rs76552560),
and a suitable primer could not be found for three SNPs
(rs11234413, rs3826454, rs67087171). Finally, genotyping
results were obtained for 10 SNPs. Our results showed
that SNP rs9395890 had a significant association with
ESRD risk according to genotype (P = 0.041; Table 3).

Allele frequencies for the NF-kB binding site gene
polymorphisms with susceptibility to ESRD

There was a significant association (P =0.049; Table 3)
between rs9395890 and ESRD. The SNP rs9395890 with
the T allele is associated with ESRD risk in the allele
model (P =0.013; odds ratio [OR] = 1.31, 95% confidence
interval [CI] = 1.06 to 1.62; Table 4) and recessive model
(P =0.008; odds ratio [OR] = 1.31, 95% confidence inter-
val [CI] =1.07 to 1.60; Table 4). There were no signifi-
cant differences in genotype or allele frequencies in the
other nine SNPs between patients with ESRD and con-
trols (Additional file 1).

ChIP assay identified NF-kB binding site rs9395890
enrichment

We included 9 ESRD patients, GG (n=3), GT (n=3),
TT (n=3), in the ChIP assay experiments. Real-time
qPCR was performed to measure the amount of NF-«kB-
enriched DNA fragments. The ChIP assay revealed an
approximately 1.49-fold enrichment of NF-kB of the
variant type TT when compared to that of the wild-type
GG in rs9395890 (P=0.027; TT=3.20+0.16, GT =

2.81 +0.20, GG = 1.71 £ 0.18). When the SNP rs9395890
was type TT, the NF-kB transcription binding activity
was higher than that of the GG type (TT: P < 0.001; odds
ratio [OR] =1.50, 95% confidence interval [CI]=1.20—
1.77; GT: P<0.001; odds ratio [OR] =1.12, 95% confi-
dence interval [CI] = 1.01-1.38; Table 5, Fig. 2).

Comparison of NF-kB binding activity of T and G allele of
the rs9395890 T/G

To establish whether the SNP rs9395890 were functional.
We investigated influenced NF-kB binding site activity
using a luciferase reporter assay in HEK293 cells. The re-
sults are shown in Fig. 3. First, we examined the back-
ground of reporter activity in T and G allele by a dose
dependent of the amount of pGL3.MLIP-IT1-LUC. It
showed that the background activity were higher upon the
increasing amount of pGL3.MLIP-IT1-LUC, however,
there were no difference in that between T and G allele
(Fig. 3a). Further, the functionality of T allele and G allele
were observed by upon overexpression of p65 or not in
the reporter assay, respectively. Data showed that the
luciferase activity in T allele (2.7X) was slightly higher than
that in G allele (2.5X), though there are no significant dif-
ference (P = 0.589).

Table 5 The ChlIP-assay reporter that the ability of SNP
rs9395890 in different genotype at NF-KB binding site

Independent variable Ct p-value OR (95% Cl) p-value
Genotype 0.027* <0.001*
GG 171 +£0.18 1.00

GT 281 +£020 1.12 (1.01 to 1.38) <0.001*
T 320+ 0.16 1.50 (120 to 1.77) <0.001*
Ct mean £+ SEM

*p <0.05
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from three experiments (P=0.027; TT=320+0.16, GT =2.81 £0.20, GG=1.71 +0.18) (Table 5)
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The SNP rs9395890 in silico functional validation

When we mapped SNPs using the NCBI database
(https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.
cgi?rs=9395890), rs9395890 was located in intron,
chromosome 6, LOC101927189, and the nearest down-
stream gene was MLIP-IT1. We further conducted
MLIP-IT1 mRNA expression quantitative trait loci
(eQTL) analysis by searching the GTEx portal (https://
www.gtexportal.org/home/). We found that for MLIP-
IT1, the T allele was significantly associated with in-
creased expression levels in the following categories:
Thyroid (P =2.6*10"’; Fig. 4b), Skin - Not Sun Exposed
(Suprapubic) (P =4.8*10"’; Fig. 4c), Skin - Sun Exposed
(Lower leg) (P =5.5*10"7; Fig. 4c), Esophagus - Mucosa
(P=1.0*10"% Fig. 4a), Minor Salivary Gland (P=0.1;
Fig. 3a), Breast - Mammary Tissue (P=0.06; Fig. 4a),
Adipose - Subcutaneous (P =0.02; Fig. 4a), Adipose -
Visceral (Omentum) (P =0.2; Fig. 4a), Nerve - Tibial
(P =0.5; Fig. 4a), Vagina (P =0.7; Fig. 4a), and Small In-
testine - Terminal Ileum (P = 0.4; Fig. 4a).

Discussion

Our results suggested that there is a significant correl-
ation between rs9395890 and ESRD risk. This genetic
association study employed bioinformatics technology

and epidemiological approaches that make it different
from other studies. Previous reports included more gen-
etic and molecular epidemiological studies of ESRD in
genome-wide association studies (GWAS). GWAS can
explore the etiological contribution of genetic variants
throughout the whole genome without applying previ-
ously hypothesis. However there are very few detected
causal variants [37]. Therefore, we provided an approach
to use a hybrid method consisting of candidate gene and
epidemiologic approaches.

The research of inflammatory transcription factor
(NF-kB) associated SNPs has been investigated in a few
previous studies [38—41]. However, we addressed the im-
portance of genetic polymorphisms in determining ESRD
in this study. We were able to identify loci and informa-
tion about which genes were associated with complex
diseases [42, 43]. In our study, we used methodological
approach that combined the NGS, NCBI, and GEO online
databases to find target SNPs and used epidemiological
methods to confirm the findings in a case—control study.
A previous study in 2014 also used publicly available gen-
omic data and bioinformatics platforms to provide add-
itional evidence for the TFBSs of SNPs of the ERa-
regulating sequence at 21q22.3, which are important in
determining breast cancer progression [43].
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Immune and inflammatory factors have important
roles in the pathogenesis of kidney diseases [44, 45].
Based on previous studies, the transcription factor NF-
KB regulates the expression of various genes that have
an important role in the regulation of immunity and
inflammation in disease [10]. NF-xB regulates T cells,
particularly the T helper 17 cells, which mainly affect
the pathogenesis of autoimmunity and inflammation
[46]. Several studies have shown the cell-intrinsic role of
NEF-kB in T cell generation [47, 48]. In the NF-«B path-
way, when cells are unstimulated, NF-kB is bound to
IkBa and IkBb in the cytoplasm, which prevents NF-«B
from entering the nucleus [49]. When these cells are
stimulated, specific kinases phosphorylate IkB, allowing
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degradation by proteasomes [50, 51]. The NF-kB re-
leased from IkB results in the passage of NF-«B into the
nucleus, and NF-kB binds to target sequences in the
promoter regions of target genes, leading to the expres-
sion of many genes involved in immune and inflamma-
tory responses [52].

The NF-«B signaling pathway regulated renal inflam-
mation and the progression of ESRD. Histological evi-
dence of NF-kB activation has been associated with
human renal disease with diabetes, glomerular disease,
and acute kidney injury [53]. The NF-«B transcription of
multiple proinflammatory molecules, such as cytokines,
chemokines, allograft antigens, adhesion molecules, and
reactive oxygen, in response to renal injury [54]. The
SNPs at NF-kB transcription binding site are functional
polymorphisms that might regulatory polymorphisms
situated in the noncoding regions of the genes which
may affect gene product protein due to the transcrip-
tional alterations [55].

In the past, we knew that the NF-kB transcription factor
binding site was involved in the regulation of downstream
inflammatory genes, which in turn affected the progres-
sion of disease and the deterioration of inflammation.
However, the results of this study found an association
between ESRD risk and the NF-«kB binding site SNP
rs9395890. Furthermore, we used a ChIP assay to identify
NE-KB binding activity with different genotypes. We
found that the NF-KB binding activity at SNP rs9395890
with the TT type was higher than that of the GG type.
And we assessed the functionality of the NF-kB binding
site rs9395890 T/G polymorphism for effects activity by
luciferase reporter assay. Our experimental Fig. 3 showed
that the transcriptional activity of the T allele was higher
than G allele, but the relative light units (RLU) data was
no significant difference between with T and G allele. So
far there were no study about the rs9395890 and MLIP-
IT1. However it might be the distance between rs9395890
and MLIP-IT1 is too far away.

Furthermore, the results from GTEx portal demon-
strated that the T allele was significantly associated with
increasing expression levels of rs9395890 in multiple tis-
sues, suggesting that rs9395890 may modulate the risk
of ESRD, possibly through a mechanism of modulating
gene expression [35].

SNP rs9395890 is an intron variant located on chromo-
some 6: 53820994 in front of the MLIP-IT1 gene — 42694
bp. MLIP-IT1 is a noncoding RNA gene, and MLIP-IT1 is
a responding gene of rs9395890. Noncoding RNA is not
translated into protein but causes transcription factor
binding protein and expression of downstream genetics.
We suspect that a mutation in this site will affect the func-
tion of this gene in MLIP-IT1, which increases the risk of
ESRD. To our knowledge, few studies have reported
MLIP-IT1 and rs9395890 [56]. DNA is transcribed to



Yang et al. BMC Nephrology (2019) 20:300 Page 10 of 13
P
A R —— e ——
e B ; o
w o tes -
un Exposed (Suprapabic) 55 ’ sse7 —.—
- Sum Expoved (Lowerbg) ——
o
—— )
.
= s
u (]
e -~ 6
. £
° :
H
o H
: :
e i
R z
. 3 L4
. :
s
L]
[¢)
. o
° o) o
: s %,
® Scnall ntestine - Termizal e 2067 04 000400 ——t— 07
DZ 0‘0 02 04 00 0'2 04 06 O‘S 10
NES ‘m-value (Posterior Probability from METASOFT)

B Thyroid for MLIP-IT1
P=2.6e-9

2
=
= Fhe
= 3 A
L 0+
=
= x L%
H -1 y :
S
=z
=
2 24

-3 T T T

GG (n=105) GT (n=210) TT (n=284)

@)

Skin (sun exposed, lower leg) for MLIP-IT1 Skin (not sun exposed, Suprapubic) for MLIP-IT1

P=55e7 P=48e-7
5 2 - 24
2 2
X 14 ? 3 = 1 b
2 . g 2 t ;
04 = 04
© s g ‘ 4
§ 14 ¥ ) £ 1 ! s
2 ? Z
£ 3
LI 2 L
3 -3 T T T
GG(n=110) GT(n=212) TT(n=92) GG (n=91) GT(n=174) TT (n=70)

Fig. 4 The result of expression quantitative trait loci analysis (eQTL) from the GETx-Portal (https.//www.gtexportal.org/home/) for MLIP-IT1
19395890 in (a) The multi-tissue eQTL Plot about Thyroid (P=2.6¥10"°), Skin - Not Sun Exposed (Suprapubic) (P=4.8%10""), Skin - Sun Exposed
(Lower leg) (P=55%10" N, Esophagus — Mucosa (P= 1.0%10~ %), Minor Salivary Gland (P=0.1), Breast - Mammary Tissue (P=0.06), Adipose -
Subcutaneous (P =0.02), Adipose - Visceral (Omentum) (P=0.2), Nerve - Tibial (P=0.5), Vagina (P=0.7), Small Intestine - Terminal lleum (P =0.4);
(b)(c) The gene expression box plot by QTL analysis using HapMap data for MLIP-IT1 rs9395890 with thyroid and skin tissue [35]

J

on noncoding RNA and its association with chromatin
remodeling, gene transcription, protein transport, and

mRNA by transcription factors, which then initiate their
function. Noncoding RNA occurs during DNA transcrip-

tion to RNA, when a portion of RNA cannot become
mRNA. Noncoding RNA regulates gene transcription
function and protein transport. More studies have focused

trafficking. Noncoding RNA also has important roles in
most human diseases, including coronary artery diseases,
autoimmune diseases, neurological disorders, and various
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cancers [37, 43, 57]. Specifically, we found that the
rs9395890 T allele was associated with the risk of ESRD.
The T allele mRNA expression levels were higher than
those of the G allele in thyroid, skin and mucosa inflam-
mation disease according to data from the GTEx portal.
These results are consistent with our ChIP assay data (TT
binding activity higher than GG; Fig. 2) [35].

However, we did not confirm that the NF-kB tran-
scription binding site SNP rs9395890 and the respond-
ing gene MLIP-IT1 regulated the mechanism of ESRD
risk. Therefore, an experiment to identify the association
between rs9395890 MLIP-IT1 RNA expression and
ESRD risk is necessary in the future.

Our study has some limitations. First, to our knowledge,
no studies have related SNPs of NF-kB transcription bind-
ing sites to disease. Our study used bioinformatics
technology, that is, the NGS, NCBI, and GEO online
databases, to screen transcription binding site genetics.
Furthermore, we used our case—control groups for geno-
typing to confirm that rs9395890 was associated with
ESRD. We used GEO database-involved B cells for ChIP-
Seq analysis, but it was difficult to obtain renal cells to
repeat verification. Second, the odds ratio of rs9395890
was very low, but this is a limitation of an observational
study. Third, our study sample size was not large enough.
Bonferroni correction could not be performed. However,
only one SNP was significantly correlated in our study,
and the results of functional analysis were indeed related
to ESRD risk. Our study included both a genetic associ-
ation test and a functional analysis, and the results were
consistent (p <0.05 in both tests). Because of the double
statistical test setting, we consider that the type 1 error
rate in our setting is less than that in general genetic asso-
ciation studies using Bonferroni correction, and thus the
evidence level provided by our study is sufficient even
though we cannot conduct Bonferroni correction. In sum-
mary, we conclude that SNP rs9395890 plays a key role in
the incidence of ESRD.

Conclusion

Our study demonstrated that SNP rs9395890 might con-
tribute to NF-«B transcription binding site ability and
might exert an effect on MLIP-IT1 activity. The function
of MLIP-IT1 with regard to ESRD progression risk and
survival should be explored further.

Additional file

Additional file 1: Genotype distributions and allele frequencies for
the NF-kB binding site SNPs in ESRD patients and control group.
(DOCX 40 kb)
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