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Abstract

proteinuria and improvement in creatinine clearance.

Background: Chronic kidney disease (CKD), including nephrotic syndrome, is a major cause of cardiovascular
morbidity and mortality. The literature indicates that CKD is associated with profound lipid disorders due to the
dysregulation of lipoprotein metabolism which progresses kidney disease. The objective of this study is to evaluate
the protective effects of curcumin on dyslipidaemia associated with adenine-induced chronic kidney disease in rats.

Methods: Male SD rats (n = 29) were divided into 5 groups for 24 days: normal control (n =5, normal diet), CKD
control (n =6, 0.75% w/w adenine-supplemented diet), CUR 50 (n =6, 50 mg/kg/day curcumin + 0.75% w/w
adenine-supplemented diet), CUR 100 (n =6, 100 mg/kg/day curcumin + 0.75% w/w adenine-supplemented diet),
and CUR 150 (n =6, 150 mg/kg/day curcumin +0.75% w/w adenine-supplemented diet). The serum and tissue lipid
profile, as well as the kidney function test, were measured using commercial diagnostic kits.

Results: The marked rise in total cholesterol, low-density lipoprotein (LDL) cholesterol, very low-density lipoprotein
(VLDL) cholesterol, triglycerides and free fatty acids in serum, as well as hepatic cholesterol, triglyceride and free
fatty acids of CKD control rats were significantly protected by curcumin co-treatment (at the dose of 50, 100 and
150 mg/kg). Furthermore, curcumin significantly increased the serum high-density lipoprotein (HDL) cholesterol
compared to the CKD control rats but did not attenuate the CKD-induced weight retardation. Mathematical computational
analysis revealed that curcumin significantly reduced indicators for the risk of atherosclerotic lesions (atherogenic index) and
coronary atherogenesis (coronary risk index). In addition, curcumin improved kidney function as shown by the reduction in

Conclusion: The results provide new scientific evidence for the use of curcumin in CKD-associated dyslipidaemia and
substantiates the traditional use of curcumin in preventing kidney damage.
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Background

Chronic kidney disease (CKD) encompasses a spectrum of
pathophysiological processes associated with abnormal
kidney function (such as proteinuria) and a progressive
decline in glomerular filtration rate. CKD is a substantial
health problem, and its prevalence is increasing worldwide
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at least in part, due to a rise in the prevalence of systemic
diseases such as metabolic syndrome that damage the kid-
ney function [1, 2].

It is well documented that cardiovascular disease, such
as heart failure or coronary artery disease, is one of the
leading causes of mortality in patients with CKD. Thus,
most patients with CKD die of the cardiovascular disease
before dialysis becomes necessary [3—5]. CKD is associ-
ated with cardiovascular complications such as dyslipi-
daemia, atherosclerosis and myocardial infarction [6].
Patients and experimental animals with CKD have a high

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12882-019-1621-6&domain=pdf
http://orcid.org/0000-0002-4735-2789
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:s.nammi@westernsydney.edu.au

Ghelani et al. BMC Nephrology (2019) 20:431

plasma concentration of lipid markers such as choles-
terol, tryglycerides and fatty acids [7, 8].

The current therapeutic regimens including the use of
statins and fibrates have limited success in treating the
associated dyslipidaemia of CKD and do not address the
underlying causal factors [9]. Although statins can be ef-
fective in slowing CKD progression in patients with
mild-to-moderate CKD, they have consistently failed to
alleviate HDL deficiency [9, 10]. Fibrates are indicated
when hypertriglyceridaemia is the primary lipid abnor-
mality in the CKD patient and may reduce triglyceride
levels significantly [10]. However, fibrates are excreted
by the kidney and may cause myositis, particularly when
used in conjunction with statins [11]. Therefore, the de-
velopment of novel therapies to either slow or reverse
the deterioration in kidney function, as well as amelior-
ate the metabolic dyslipidaemia of CKD, is highly
needed. Natural products have shown significant poten-
tial in improving hepatic lipid metabolism in
experimentally-induced CKD [12-15].

Curcumin [1,7-bis (4-hydroxy-3-methoxyphenyl)-1,6-
heptadiene-3,5-dione] is produced in the rhizome of
the plant Curcuma longa L. and is a major poly-
phenolic chemical component of turmeric powder
[16]. The pharmacokinetic, pharmacodynamics and
clinical pharmacological properties of curcumin have
been extensively studied over the past six decades.
The effects of curcumin on renal damage have been
investigated both in vivo and in vitro. In laboratory
animals, chronic supplementation of curcumin has
been shown to protect renal damage in various
chemically-induced nephrotoxicity and renal injury
models [17-29]. Curcumin has also been shown to
possess renoprotective effects against various metal-
induced nephrotoxicity [30-33]. In addition, the daily
administration of curcumin has been shown to reduce
proteinuria, glomerulosclerosis, tubule-interstitial in-
jury and subsequently, renal failure in 5/6 nephrecto-
mised rats [34—38]. Furthermore, curcumin has been
shown to protect renal damage in streptozotocin-
(STZ) [39-41], STZ-nicotinamide [42] and ischaemia-
reperfusion-induced of CKD rat models [43]. In
addition, curcumin has shown cardioprotective effects
by attenuating chronic renal failure-induced cardiac
hypertrophy and remodelling in 5/6 nephrectomised
rats [44—46]. Recently, Abeer and El-Mahalaway [47]
demonstrated that the daily administration of curcu-
min protected against aflatoxin-induced renal cortical
damage in Wistar rats. Jacob et al. [48] observed that
curcumin administration reduced glomerulonephritis
injury inflammation and fibrosis and improved renal
function in mice. In an in vitro study performed by
Waly et al. [49], curcumin markedly protected the hu-
man embryonic kidney cell from cisplatin-and
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oxaliplatin-induced oxidative stress. In addition, cur-
cumin has been shown to protect renal tissue from fi-
brosis by suppressing the transforming growth factor-
B (TGE- B) in vitro [50].

Apart from renoprotective effects, a number of anti-
dyslipidaemic activities of curcumin have been reported
in diet- and/or chemical-induced dyslipidaemic animal
models [51]. Furthermore, curcumin has shown signifi-
cant potential in improving hepatic lipid metabolism in
the non-CKD dyslipidaemic population [52, 53]. A re-
cent study showed that curcumin ameliorates renal dam-
age and oxidative stress in adenine-induced CKD in rats
[54]. However, no study has examined the effects of cur-
cumin on hepatic lipid alteration in experimentally in-
duced CKD. Thus, the aim of the study was to examine
the effects of increasing concentrations of curcumin on
the various biochemical parameters involved in lipid me-
tabolism of a chemically-induced CKD rat model to fur-
ther support curcumin’s use in CKD.

Methods

Chemicals and apparatus used

Curcumin (>94%) was purchased from Sigma (St. Louis,
MO, USA). The diagnostic kits of cholesterol, triglycer-
ides, HDL-cholesterol, albumin, creatinine and urea nitro-
gen were obtained from PM Separations (Capalaba DC,
USA), while the non-esterified free fatty acid kit was ob-
tained from Wako Diagnostics. Both the standard
(AIN93G) and the adenine (0.75% w/w)-supplemented
(SF15-082) rat pellet diets were supplied by Speciality
Feeds (Glen Forrest, WA, Australia). The standard diet
contained (in weight percentage) approximatley: 60%
carbohydrate, 17.5% protein, 5% fat, 7% crude fibre, and
the adenine-supplemented diet contained 0.75% adenine,
in addition to the standard diet. All other chemicals were
of analytical or higher grade from Sigma-Aldrich (St
Louis, MO, USA), unless otherwise specified. A UV-VIS
spectrophotometer (Ultrospec 2000, Biochrom Ltd., Cam-
bridge, UK) was used for all absorbance measurements.

Animals

In the present study, twenty-nine (29) adult male
Sprague-Dawley rats with an average body weight of
150-200 g were used in polypropylene cages (3 rats per
cage to minimise isolation stress) with water ad libitum
and 12 h light/dark cycle in a temperature controlled fa-
cility at 24 £ 2 °C having 50-60% relative humidity. The
rats were acclimatised to the laboratory conditions for
one week prior to experimentation. The use and care of
the animals in this experimental protocol was approved
by the Institutional Animal Care and Ethics Committee
(Approval Number: A11259) of Western Sydney Univer-
sity, Australia following the National Health and Medical



Ghelani et al. BMC Nephrology (2019) 20:431

Research Council (NHMRC) guidelines on the “Austra-
lian Code of Practice for the Care and Use of Animals
for Scientific Purposes”.

Experimental design and treatments

The sample size (number of rats per group) calculation
in the present study was carried out using the “resource
equation method” [55]. In this method, a value ‘E’ that indi-
cates the sample size is measured which is the degrees of free-
dom of analysis of variance (ANOVA). The ‘E value is
calculated by subtracting the total number of experimental
groups from the total number of experimental animals. The
rats were weight matched and randomly divided into five
groups (1 =5 to 6 per group) and received the following
treatments: Group 1 received 1% sodium carboxy methyl cel-
lulose (CMC) together with standard diet and served as con-
trol; Group 2-5 received adenine-supplemented diet (0.75%
w/w adenine in standard diet) to induce chronic kidney dis-
ease. In addition to adenine-supplemented diet, Group 2 re-
ceived 1% sodium CMC and served as the CKD control;
Group 3-5 received curcumin at doses of 50, 100 and 150
mg/kg (dissolved in 1% sodium CMC), respectively. All treat-
ments were given by oral gavage once daily for 24 days. On
day-21, the rats were placed individually in metabolic cages,
acclimatised for two days and the 24 h faeces and urine were
collected on day-24 (Fig. 1). The urine samples were centri-
fuged at 1000 rpm for 10 min to remove food particles and
debris, and the supernatants were stored at — 20 °C until ana-
lysis. The rats were anesthetised with an intraperitoneal injec-
tion of ketamine (75 mg/kg) and xylazine (5 mg/kg) cocktail,
and blood samples (approximately 3 mL) were collected from
a cardiac puncture and allowed to clot for 30 min before cen-
trifuging at 3000 rpm for 15 min. The serum was separated
and stored at — 20 °C until biochemical analysis. After blood
collection, the liver and kidney of each rat were immediately
dissected, weighed and snap frozen in liquid nitrogen and
stored at — 80 °C until biochemical analysis. At the end of the
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procedure, the rats were euthanised by exsanguination from
the abdominal aorta.

Biochemical estimations

Body weight, food intake and water intake

The daily body weights of all rats were recorded daily at
4 PM for 24 days. The 24 h food and water intakes from
each cage were determined daily at 10 AM.

Determination of serum biochemical parameters

Serum total cholesterol, triglycerides, HDL-cholesterol,
NEFA, urea nitrogen, albumin and creatinine were esti-
mated as described [56] earlier using the commercial
diagnostic kits following the manufacturer’s instructions.
Serum VLDL and LDL-cholesterol were calculated indir-
ectly by the Friedewald’s equations.

VLDL = Triglycerides/5; LDL = Total-cholesterol -
[HDL + VLDL].

Atherogenic index (AI) and coronary risk index (CRI)
as measures of the extent of atherosclerotic lesions and
coronary atherosclerosis development, respectively, were
calculated using serum total cholesterol and HDL chol-
esterol of different groups of rats using the mathematical
formulae below [56].

Al = [Total cholesterol- HDL]/HDL; CRI = Total chol-
esterol/HDL.

Determination of urine biochemical parameters

Total urinary protein (proteinuria) was estimated based
on the method of Bradford following the manufacturer’s
instructions (Bio-Rad, Hercules, CA, USA), with absorb-
ance measured at 595 nm using Thermo Multiskan mi-
croplate reader. Urine creatinine and urea nitrogen
(UUN) were estimated using the commercial diagnostic
kits following the manufacturer’s instructions. Creatinine
clearance was mathematically calculated as a clinical
index of kidney function using serum and urine creatin-
ine values as per the following formula [57].

Rats were transferred to
metabolic cages

-«

Adenine-supplemented diet l =

Days
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Fig. 1 Schematic representation of experimental protocol
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[Urine creatinine (mg/dL) x urine volume (mL)/serum
creatinine (mg/dL)] x [1000/body weight (g)] x [1/1440
(min)].

Determination of hepatic lipids

Total lipids were extracted from the liver tissues by the
modified method of Hara and Radin [58]. Briefly, 75-100
mg aliquots of liver tissue were homogenised in 20 vol-
umes of isopropanol, shaken on orbital shaker for 45 min
and centrifuged at 3000 x g for 15 min. The separated su-
pernatants were analysed for hepatic total cholesterol, tri-
glycerides and NEFA using commercial diagnostic kits.

Data and statistical analysis
All the results are expressed as mean + SEM. To analyse
the quantitative differences among the experimental groups
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before or after treatments, the respective data was subjected
to analysis of variance (ANOVA) using Graphpad Prism
(version 6.0) statistical programme. Post-hoc comparisons
were made using Dunnett’s multiple comparisons test. Stat-
istical differences in individual groups before and after
treatments were detected using Student’s paired t-test. In
all tests, p <0.05, p <0.01 and p <0.001 were used as the
criterion criteria for statistical significance.

Results

Body weight

There was no significant difference in the initial body
weights (194.2+5.7g to 1988 +2.4g; n =5 to 6) among
the different groups (Fig. 2 a). While the normal control
rats (n =5) exhibited a significant increase (380.4+6.0¢g
vs 194.2 +5.7 g; p <0.001) in body weight compared with
their pre-treated values at the end of the 24 days, neither
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Fig. 2 Effect of curcumin on adenine-induced body weight change in rats (A) Daily recordings of the mean body weight of the experimental
groups of rats and (B) comparison of the mean body weights of rats prior to (open columns) and after treatment (closed columns) either with
the adenine-supplemented diet alone or with curcumin. Each bar represents the mean + SEM of 5-6 rats. Significant difference from normal
control at identical times: *** p < 0.001. No significant difference from CKD control rats at identical times: ns (p > 0.05). Significant difference from
the respective pre-treated value: ® p < 0.001. No significant difference from the respective pre-treated value: ® (p > 0.05). CUR = Curcumin.
J
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the CKD control nor the curcumin-treated rats showed
any significant change in body weight compared with their
pre-treated values. On the other hand, CKD control rats
exhibited significant growth retardation (218.0+5.2g vs
3804 +6.0g; p<0.001, n =6) compared with the normal
control group at the end of the 24 days (Fig. 2 b). How-
ever, the groups of rats treated with the various doses of
curcumin (# = 6) did not show any signs of improvement
in body weight compared with CKD control rats (Fig. 2 b).

Water intake

There was no significant difference in the initial water
intake (31.9+1.1mL to 31.6+14mL; n =5 to 6) be-
tween different groups (Fig. 3 a). While the CKD control
rats (n =6) exhibited a significant increase in water in-
take compared with their pre-treated values (43.3 + 1.1
mL vs 31.5 + 1.2 mL; p <0.001) or with the normal con-
trol group (43.3+1.1 vs 31.9+ 1.1 mL; p <0.001) at the
end of the 24 days, neither the normal control nor the
curcumin-treated rats showed any significant change in
water intake compared with their pre-treated values (Fig.
3 b). However, the groups of rats treated with the vari-
ous doses of curcumin (n =6) showed a significant de-
crease in water intake compared with CKD control rats
(Fig. 3 b).

Food intake

There was no significant difference in the initial food in-
take (19.3+1.4g to 13.9 £ 1.2 g; n = 6) between the CKD
control and curcumin-treated groups (Fig. 4 a & b).
However, there was a significant difference in the initial
food intake (25.1+1.7g to 13.9+1.2g; n =5 to 6) be-
tween the normal and the CKD control groups (Fig. 4 a
& b). On the other hand, CKD control rats exhibited a
significant (p < 0.001) decrease in food intake (28.3 + 1.2
g vs 151+1.1g n=5-6) compared with the normal
control group at the end of the 24 days (Fig. 4 b). How-
ever, the curcumin-treated groups (# =6) did not show
significant improvement in food intake compared with
the CKD control group (Fig. 4 b).

Serum total cholesterol

Rats fed with the adenine-supplemented diet (CKD con-
trol rats) alone showed a significant increase (p < 0.001,
n=6) in total cholesterol level when compared with the
normal control group (n =5; Table 1). Curcumin treat-
ment produced a significant reduction in total cholesterol
level at doses of 50 (p <0.01, n =6), 100 (p <0.001, n = 6)
and 150 mg/kg (p <0.01, n =6) compared with the CKD
control rats, although the reduction was not dose-
dependent among the three doses.
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Serum triglycerides

The CKD control group showed a significant (p <0.001,
n =6) increase in serum triglycerides when compared
with the normal control group (1 =5) at the end of the
treatment (Table 1). Curcumin treatment at the doses of
50 (p <0.05, n =6), 100 (p <0.001, n = 6) and 150 mg/kg
(p <0.01, n =6) showed a statistically significant reduc-
tion in serum triglycerides compared to the CKD control
group, although the reduction was not dose-dependent
among the three doses.

Serum HDL cholesterol

Rats fed with the adenine-supplemented diet alone
showed a significant (p <0.001; n = 6) reduction in HDL
levels compared with the normal control (# =5) fed with
the standard diet at the end of the 24 days (Table 1).
However, curcumin treatment at the doses of 100 and
150 mg/kg, along with adenine-supplemented diet, pro-
duced a significant (p <0.05, n =6) elevation in HDL
cholesterol compared with the CKD control rats.

Serum LDL and VLDL cholesterol

The LDL and VLDL levels were significantly elevated
(p <0.001; n =6) in the CKD control rats as compared
with the normal control rats (# = 5; Table 1). Curcumin
treatment showed a significant reduction in LDL choles-
terol at the doses of 50, 100 and 150 mg/kg (p < 0.001,
n =6) compared with the CKD control rats. On the
other hand, curcumin treatment also showed a signifi-
cant reduction in VLDL cholesterol at the doses of 50
(p <0.05, n =6), 100 (p <0.001, n =6) and 150 mg/kg
(p <0.01, n = 6) compared to the CKD control rats.

Serum non-esterified fatty acids (NEFA)

Serum NEFA levels were found to be significantly (p <
0.05) higher in the CKD control group (# = 6) compared
with the normal control rats (z =5) at the end of the 24
days (Table 1). Curcumin treatment produced a signifi-
cant reduction in serum NEFA at doses of 100 (p < 0.05,
n =6) and 150 mg/kg (p <0.01, n =6) compared with
the CKD control rats.

Atherogenic index (Al) and coronary risk index (CRI)

CKD control rats showed a significant (p <0.001, n = 6)
elevation of Al and CRI compared with normal control
rats (n =5; Table 1). On the other hand, the groups
treated with curcumin at the three dose levels showed a
significant (p <0.001, n =6) reduction in Al and CRI
when compared with the CKD control rats.

Kidney biochemical parameters

Serum creatinine

The CKD control rats showed a significant increase (p <
0.001, n =6) in serum creatinine level when compared
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Fig. 3 Effect of curcumin on adenine-induced water intake change in rats (A) Daily recordings of the mean water intake changes of the experimental
groups of rats and (B) comparison of the mean water intake of rats prior to (open columns) and after treatment (closed columns) either with the adenine-
supplemented diet alone or with curcumin. Each bar represents the mean + SEM of 5-6 rats. Significant difference from normal control at identical times:
" 5 < 0001. Significant difference from CKD control rats at identical times: ** p < 0.001. Significant difference from the respective pre-treated value: @ p <
0.001. No significant difference from the respective pre-treated value: b (p > 005). CUR = Curcumin.

with the normal control group (n =5). Curcumin treat-
ment produced a significant dose-dependent reduction
(p <0.01, n =6) in serum creatine level at doses of 100
and 150 mg/kg (p <0.01, n = 6) compared with the CKD
control rats (Table 2).

Blood urea nitrogen

The blood nitrogen concentration (BUN) in the serum signifi-
cantly increased (p <0.001, # =6) in CKD control rats com-
pared with the normal control rats (n =5). Curcumin
treatment at the doses of 100 and 150 mg/kg significantly de-
creased (p <0.05 and p <0.01 respectively, n = 6) BUN con-
centration compared with the CKD control rats (Table 2).

Serum albumin

The CKD control rats showed a significant (p <0.001,
n =6) reduction of serum albumin level compared with
the normal control rats (n =5), which was significantly
elevated by the curcumin treatment at the doses of 100
(p <0.01, n =6) and 150 (p <0.05, n =6) mg/kg at the
end of the 24 day treatment period (Table 2).

Urinary volume

The CKD control group showed a significant (p <0.001,
n =6) increase in urinary volume when compared with
the normal control group (1 =5) at the end of treat-
ment. Curcumin treatment at the doses of 100 (p < 0.05,
n =6) and 150mg/kg (p <0.001, n =6) showed a
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Fig. 4 Effect of curcumin on adenine-induced food intake change in rats (A) Daily recordings of the mean food intake changes of the experimental groups of
rats and (B) comparison of the mean food intake of rats prior to (open columns) and after treatment (closed columns) either with the adenine-supplemented
diet alone or with curcumin. Each bar represents the mean =+ SEM of 5-6 rats. Significant difference from normal control at identical times: * p < 0001.
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significant difference from the respective pre-treated value: b (p>005). CUR = Curcumin.

Table 1 Effect of curcumin treatment on serum lipid profile changes after 24 days in adenine-induced CKD rats

Parameter Normal CKD CUR CUR CUR

Control Control (50 mg/kg) (100 mg/kg) (150 mg/kg)
Total cholesterol (mg/dL) 82.11 + 838 15328 + 464" 10246 = 11.09* 84.74 + 391%** 10622 + 13.52%*
Triglycerides (mg/dL) 6859 + 3.82 109.19 + 1.71%# 8542 + 3.09* 6565 + 6.37%** 7570 + 6.19%*
HDL-cholesterol (mg/dL) 3542 +3.10 16.16 + 333" 2344 + 111" 2974 + 1.11% 2836 + 341%
LDL-cholesterol (mg/dL) 3297 + 1441 11528 + 523" 54.81 + 535 4440 + 428%** 4611 + 4097
VLDL-cholesterol (mg/dL) 1372+ 076 2184 + 034" 17.08 + 0.62* 13.13 + 1.28%%* 15.14 + 1.24%*
NEFA (uEq/L) 87263 + 1803 1099.16 + 16.36" 81092 + 60.81™ 760.55 + 37.07* 73497 + 7861%*
Al 131 +0.17 1063 + 228" 341 + 048 222 + 058%* 3.26 + 1.17%%*
CRI 2314017 1163 + 228" 447 + 055 322 + Q2% 3.10 # 0.1%%%

Values represent the mean + SEM of 5 to 6 rats

Significant difference from normal control: *p < 0.05; *¥p < 0.001

Significant difference from CKD control: “p < 0.05; “p < 0.01; “"p < 0.001

No significant difference from CKD control: ns (p > 0.05)

CKD Chronic kidney disease; CUR Curcumin; NEFA Non-esterified free fatty acids
Al Atherogenic index; CRI Coronary risk index
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Table 2 Effect of curcumin treatment for 24 days on serum and urine biomarkers of renal function in adenine-induced CKD rats

Biologic Biomarker Normal CKD CUR CUR CUR
Fluid Control Control (50 mg/kg) (100 mg/kg) (150 mg/kg)
Serum
Creatinine (mg/dL) 045 + 007 262 + 008" 250 +0.15™ 171 £0.10% 127 + 048"
BUN (mg/dL) 446 + 153 1309 + 1.19" 1249 + 253 " 7.14  160* 499 + 130*
Albumin (mg/dL) 841 + 032 547 + 008" 6.57 + 027 ™ 7.06 + 039%* 645 + 0.27*
Urine
Urine volume (mL) 2440 + 2.21 37.00 + 158" 32,50 + 0.92 2858 + 146%** 2567 + 1175
Total protein (mg/24 h) 552 + 083 70.73 + 414" 2526 + 3.07%** 14.82 + 3.33%* 18.13 + 2.46%%*
Creatinine (mg/dL) 2869 + 261 11.23 + 034" 1354 £ 085" 2272 + 131%%% 23.56 + 2.15%%*
UUN (mg/dL) 14.28 £ 1.06 595 + 075" 892 + 082" 9.96 + 0.65** 1001 + 0.25*
CrCl (mL/min/kg) 307 +0.20 063 + 013 053 + 005 ™ 137 +0.15% 203 + 0.23%*

Values represent the mean + SEM of 5 to 6 rats

Significant difference from normal control: *p < 0.01; **p < 0.001
Significant difference from CKD control: *p < 0.05; **p < 0.01; ***p < 0.001
No significant difference from CKD control: ns (p > 0.05)

CKD Chronic kidney disease; CUR Curcumin; BUN Blood urea nitrogen; CrCl Creatinine clearance; UUN Urine urea nitrogen

significant dose-dependent reduction in urinary volume
compared to the CKD control group (Table 2).

Urinary total protein (proteinuria)

The levels of total urinary protein in the CKD control
rats were significantly increased (p <0.001, n =6) com-
pared with the normal control rats (n =5). However, all
three doses of curcumin significantly reduced (p < 0.001,
n =6) proteinuria compared with the CKD control rats
(Table 2).

Urinary creatinine

The CKD control group showed a significant decrease
(p <0.001, n =6) in urine creatinine when compared
with the normal control group (n =5) at the end of
treatment. Curcumin treatment at the doses of 100 (p <
0.001, n =6) and 150 mg/kg (p <0.001, n =6) showed
statistically significant improvement in urine creatinine
compared to the CKD control group (Table 2).

Urinary urea nitrogen

The urinary urea nitrogen (UUN) concentration was sig-
nificantly reduced (p <0.001, n =6) in the CKD control
rats compared with the normal control rats (z = 5). Cur-
cumin treatment at the doses of 100 and 150 mg/kg sig-
nificantly increased (p <0.05 and p <0.01 respectively,
n =6) UUN concentration compared with the CKD con-
trol rats (Table 2).

Creatinine clearance

The level of creatinine clearance calculated by the stand-
ard formula was significantly suppressed (p <0.001, n =
6) in the CKD control rats compared with the normal
control rats (m =5; Table 2). However, curcumin

treatment significantly improved creatinine clearance at
the doses of 100 (p <0.05, n =6) and 150 mg/kg (p <
0.001, n = 6) compared with the CKD control rats.

Hepatic lipid levels

There was no significant change in liver weight (normal-
ised to body weight) observed among the experimental
groups. Rats fed with adenine-supplemented diet alone
(CKD control rats) showed a significant increase in hep-
atic cholesterol (p <0.001, n = 6), triglycerides (p <0.001,
n =6) and NEFA (p <0.01, n = 6) compared with the nor-
mal control group (n =5; Table 3). Curcumin at all the
three doses significantly reduced the hepatic cholesterol
(p <0.05 to p <0.001; n = 6), triglycerides (p <0.01 to p <
0.001; #n = 6) and NEFA (p <0.05 to p <0.001; n = 6) levels
compared with the CKD control rats.

Discussion

In the present study, we examined the protective effects of
curcumin on hepatic lipid derangement and renal damage
in an adenine-induced rat model of CKD. The long-term
feeding of adenine is known to suppress the excretion of
various nitrogenous compounds due to renal tubular oc-
clusion and produce metabolic abnormalities in rats that
closely mimics CKD in humans [59]. Excess adenine in
mammalian metabolism becomes a significant substrate
for xanthine dehydrogenase and oxidises into low soluble
compounds 2, 8-dihydroxyadenine which further precipi-
tate in renal tubules and damage the kidney tissue accom-
panied by oxidative stress and subsequently renal
dysfunction [60]. The adenine model is reproducible, sim-
pler to conduct and more like human CKD than the 5/6
nephrectomy [61, 62]. Adenine-induced renal damage is
time-dependent-the longer the feeding time, the more se-
vere the renal damage [63]. Previous studies suggested
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Table 3 Effect of curcumin treatment on liver weight and lipid levels after 24 days in adenine-induced CKD rats

Parameter Normal CKD CUR CUR CUR

Control Control (50 mg/kg) (100 mg/kg) (150 mg/kg)
Liver weight (g/100 g bw) 391 + 0.09 361+ 008 3284023 301 +013 432 +050
Cholesterol (mg/g tissue) 0.38 + 007 495 + 130" 2.99 + 0.28* 261 + 0.15%* 253 + 0.24%%*
Triglycerides (mg/g tissue) 255+ 073 1051 + 139" 500 + 1.11% 265 + 040%%* 3.73 + 0.59%%*
NEFA (mg/g tissue) 0.73 = 0.05 120 + 006" 091 +0.11* 061 + 0.07% 0.89 + 0.05%

Values represent the mean + SEM of 5 to 6 rats

Significant difference from normal control: #p < 0.01; **p < 0.001

Significant difference from CKD control: *p < 0.05; **p < 0.01; ***p < 0.001

CKD Chronic kidney disease; CUR Curcumin; NEFA Non-esterified free fatty acids;

that 0.75% w/w adenine in the diet for 4 weeks is an
optimum duration for damage to the renal tissue to occur
without mortality [61, 63]. Furthermore, adenine feeding
for more than 7 weeks has caused significant mortality
[64]. Nevertheless, Aoyama et al. [65] has shown that ad-
enine (0.75% w/w) in the diet produced renal damage re-
sembling CKD but also found 50% mortality. Thus, in the
present study, we used adenine at the dose of 0.75% w/w
in the diet for 24 days and no mortality was found which
is consistent with previous reports [61-64]. Furthermore,
biochemical evaluations in our study have shown that dis-
tinctive CKD was produced in rats upon feeding with ad-
enine. To our knowledge, this is the first study to use
an adenine-induced rat model of CKD to investigate the
protective effects of curcumin on hepatic lipid
metabolism.

In the present study, the body weight of the rats
treated with curcumin was not significantly improved
compared to CKD rats. The reason of the observed dis-
crepancy in the body weight between curcumin-treated
and untreated CKD rats is not clear. The possible
explanation for this discrepancy is decreased food intake
in CKD rats compared to control rats. Moreover, CKD
resulted in impaired triglyceride rich lipoprotein (ie.
VLDL) metabolism which reduced the fatty acids deliv-
ery to the adipose tissue and limits the capacity to store
energy and thus, contributes to weight loss, wasting and
cachexia in CKD condition [66]. However, in the present
study, curcumin could not reverse the CKD-induced
weight reduction although it alleviated the impaired tri-
glyceride metabolism in CKD rats. Furthermore, CKD
rats increased water intake because the kidneys lose the
capacity to concentrate the urine and excrete more
water (which is evident by the increased urinary volume
of CKD rats). Due to thirst, CKD rats drink more water.
However, curcumin treatment normalised the water in-
take which may be due to its protective effects on kidney
damage and thereby, the kidneys retain the capacity to
concentrate the urine (which is evident by the decreased
urinary volume of curcumin- treated rats).

CKD animals displayed a marked increase in serum
total- and LDL-cholesterol. Serum total cholesterol

elevation may be in part due to the enhanced cholesterol
biosynthesis via up- regulation of the HMG-CoA reduc-
tase enzyme [67, 68] as well as due to a relative reduction
of hepatic cholesterol elimination via down-regulation of
the cholesterol 7a-hydroxylase (CYP7A1) enzyme in CKD
animals [69, 70]. Moreover, increased serum LDL- choles-
terol in the CKD rats could be due to the down-regulation
of LDL receptor in response to CKD [71]. Although the
precise molecular mechanism(s) of LDL-receptor protein
deficiency in CKD have not been fully characterised, pre-
vious studies implicate inefficient translation and/or in-
creased LDL-receptor protein turnover [72, 73]. However,
our results demonstrated that chronic curcumin supple-
mentation to CKD rats effectively reduced the serum and
hepatic total-cholesterol and serum LDL-cholesterol, and
this was found to be consistent with previous studies of
curcumin using various dyslipidaemic animal models [74—
76]. An earlier study demonstrated that curcumin reduced
serum and hepatic cholesterol levels mainly by inhibiting
HMG-CoA reductase enzyme in the liver [77-79]. It is re-
ported that curcumin stimulates CYP7A1 enzymatic activ-
ity by increasing its hepatic gene expression, resulting in
enhanced clearance of cholesterol as bile acids [80]. More-
over, previous studies demonstrated that curcumin up-
regulates the expression of LDL receptor in mouse macro-
phages [81], human hepatoma derived HepG2 cells [82]
and hepatic stellate cells (HSCs) [83]. Hence, the reduc-
tion of LDL-cholesterol by curcumin could be due to the
prevention of the suppressive action of CKD on the LDL-
receptor site. Thus, the constellation of these previous
findings strongly support the results of our study and
the observed cholesterol-lowering efffects of curcumin
could be due to single or multiple effects of curcumin
on potential site(s) of action leading to decreased
cholesterol biosynthesis and/or enhanced elimination
and/or increased hepatic uptake.

Hypertriglyceridaemia is one of the most common
quantitative lipid abnormalities in patients with CKD [5,
84, 85]. Hypertriglyceridaemia in CKD is thought to be
due to the dysregulation of various enzymes such as
lipoprotein lipase (LPL) and hepatic lipase, apolipopro-
teins such as apoC III and apoC II and receptor such as
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VLDL-receptor involved in triglycerides metabolism
[86]. In this study, CKD rats exhibited increased levels of
serum and liver triglycerides (TGs) and serum TG-rich
lipoprotein VLDL. Vaziri and Liang [87] reported that
the deficiency of skeletal muscle, adipose tissue and
myocardium LPL activities may contribute significantly
to the elevation of TGs in CKD. Moreover, hepatic lipase
protein expression and activity is also decreased in CKD
rats [88, 89]. Collectively, lipase deficiency, at least in
part, may be responsible for the apparent increased
serum and hepatic triglyceride levels in CKD animals in
the present study. The VLDL receptor belongs to the
large LDL receptor gene family with distinctly different
ligand specificity and tissue distribution compared with
LDL receptor. It is primarily expressed in skeletal
muscle, myocardium, and adipose tissue [90, 91] where
it binds and internalises triglyceride-rich VLDL particle.
It has been demonstrated that the down-regulation of
VLDL receptor expression is associated with CKD and
nephrotic syndrome together with elevated plasma
VLDL levels [92]. Therefore, in this study, the increased
serum VLDL levels in the CKD rats could be due to
VLDL receptor deficiency.

Our results demonstrated that chronic curcumin
supplementation effectively reduced serum triglycer-
ides and VLDL-cholesterol along with liver triglycer-
ides in accordance with earlier reports [79, 93, 94].
Previously, Seo et al. [95] demonstrated that chronic
curcumin supplementation increased skeletal muscle
LPL activity in db/db mice. More recently, Prabu and
Sumedha [96] reported that a curcumin analogue in-
creased plasma LPL activity in arsenic intoxicated
rats. Thus, in the present study, the reduction in tri-
glycerides levels following curcumin administration
could be due to increased tissue and/or plasma LPL
activity.

Together with hypertriglyceridaemia, CKD is associ-
ated with impaired hepatic fatty acid metabolism. Con-
sistent with previous reports, CKD rats exhibited a
significant elevation of serum and hepatic free fatty acids
in our study. Chronic curcumin administration markedly
reduced the serum and hepatic free fatty acid levels. Al-
though little is known on the effects of CKD on fatty
acid metabolism, it has been demonstrated that curcu-
min decreased lipid accumulation by up-regulating
PPARa while down-regulating various lipogenic genes
such as SREBPIc, acetyl-CoA carboxylase 1 (ACC1),
fatty acid synthase in the liver of mice [97, 98]. Thus,
curcumin may regulate hepatic fatty acid metaboilsm in
CKD by decreasing synthesis and/or increasing catabol-
ism in liver.

The ratio of total cholesterol to HDL serves as a useful
indicator of cholesterol homeostasis in the arterial wall,
glomerular mesangium and liver. The CKD model
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employed in the present study exhibited a significant in-
crease in serum total cholesterol-to-HDL cholesterol ra-
tio (CRI), indicating an atherogenic profile. In contrast,
chronic curcumin supplementation to CKD animals nor-
malised total cholesterol-to-HDL cholesterol ratio (CRI)
and Al Furthermore, CKD is consistently associated
with reduced plasma HDL cholesterol level largely due
to the impaired maturation of cholesterol ester poor
HDL-3 to cholesterol rich HDL-2. In the present study,
CKD rats demonstrated a decreased concentration of
HDL compared to control rats. HDL abnormalities in
CKD are largely due to lecithin—cholesteryl acyltransfer-
ase (LCAT), an important enzyme for HDL maturation,
deficiency [67] and/or reduced expression of hepatic
HDL docking receptor (SR-B1) [99-101]. ATP-binding
cassette transporter A1 (ABCA1) is a membrane associ-
ated protein that mediates transfer of cellular cholesterol
and phospholipids to lipid-poor HDL for disposal in the
liver and, as such, serves as a gatekeeper of reverse chol-
esterol transport pathways [102]. Prabu and Sumedha
[96] reported that arsenic-intoxicated rats chronically
treated with dimethoxycurcumin, a structural analogue
of curcumin, showed increased LCAT activity which also
supports an earlier observation by Tu et al. [103] in
high-fat diet-fed rats. Moreover, Zhao et al. [104] dem-
onstrated that curcumin dose-dependently increased the
protein level of ABCA1 in mouse macrophages but did
not affect the protein expression of SR-BL. Thus, in the
present study, the molecular mechanism(s) of curcumin
to alleviate the HDL abnormalities could be due to the
inhibition of the suppressive action of CKD on LCAT
and/or ABCA1 protein deficiency.

Moreover, in the present study, curcumin failed to
show dose-dependence on lipid parameters measured in
plasma and in the liver and kidney tissues. The values
indicate that the high dose (150 mg/kg) showed more or
less similar size effect (statistically non-significant differ-
ence) as that of the median dose (100 mg/kg). As
pointed out by previous researchers, curcumin is poorly
soluble in aqueous solutions and hence, its maximum
solubility in gastric fluids would have been reached with
around 100 mg/kg dose in our study. Thus, one possible
explanation for curcumin’s failure to show dose-
dependent effects could be due to its poor aqueous solu-
bility in gastric fluids leading to inadequate intestinal ab-
sorption and low oral bioavailability [105-107].

Limitations of the present study include evaluating the
protective effects of curcumin only and does not provide
any information on the curative effects of curcumin on
CKD-induced dyslipidaemia. Furthermore, we have de-
duced the molecular mechanism(s) responsible for the
observed changes in lipid metabolism from literature.
Further studies have been undertaken in our laboratory
to explain the mechanism(s) of the hepatic lipid
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metabolism-regulating activities of curcumin (manu-
script in progress).

Conclusion

CKD induced by feeding adenine-supplemented diet to rats
leads to the development of metabolic dyslipidaemia. Long-
term curcumin administration improves metabolic dyslipi-
daemia and shows renoprotective effects in adenine-
induced CKD. Thus, the present findings support the po-
tential therapeutic value of curcumin as a protective phyto-
constituent in attenuating CKD-induced cardiovascular
disease, although further clinical evaluation is required as a
treatment modality.

Abbreviations

ACAT: Acyl; CKD: Chronic kidney disease; CoA: Cholesterol acyltransferase;
CRF: Chronic renal failure; CVD: Cardiovascular disease; CYP7A1: Cholesterol
7a-hydroxylase; ESRD: End stage renal disease; HDL: High-density lipoprotein;
HMGCoA: 3-hydroxy-3-methyl-glutaryl-coenzyme A; LCAT: Lecithin—
cholesterol acyltransferase; LDL: Low-density lipoprotein; LDLr: Low-density
lipoprotein receptor; LPL: Lipoprotein lipase; NEFA: Non-esterified free fatty
acid; PCSK9: Proprotein convertase subtilizing kexin 9; SR-B1: Scavenger
receptor class B type 1; STZ: Streptozotocin; TG: Triglycerides; VLDL: Very low-
density lipoprotein

Acknowledgements
Not applicable.

Authors’ contributions

HG, SN, DC and VRN made substantial contributions to conception design
and conduction of research. HG performed all the experiments in the
laboratory. Data collection, analysis, graphical representation and interpretation
were done by HG and SN. Article was written by HG. Critical revision of the
article was done by SN, VRN and DC. Critical statistical analysis was done by HG
and SN. All authors read and approved the final manuscript.

Funding
No funding was received.

Availability of data and materials
The datasets used and/or analysed during the current study are available
from the corresponding author on reasonable request.

Ethics approval and consent to participate

The experimental design was approved by the Institutional Animal Care and
Ethics Committee (Approval Number: A11259) of the Western Sydney
University following the NHMRC guidelines on the “Australian Code of
Practice for the Care and Use of Animals for Scientific Purposes”.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

'School of Science and Health, Western Sydney University, Sydney, NSW
2751, Australia. °NICM Health Research Institute, Western Sydney University,
Sydney, NSW 2751, Australia. *South Western Sydney Clinical School School
of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.

Page 11 of 13

Received: 5 October 2018 Accepted: 8 November 2019
Published online: 21 November 2019

References

1. Trivedi HS, Pang MM, Campbell A, Saab P. Slowing the progression of
chronic renal failure: economic benefits and patients' perspectives. Am J
Kidney Dis. 2002;39(4):721-9.

2. Dirks JH, de Zeeuw D, Agarwal SK, Atkins RC, Correa-Rotter R, D'Amico G,
et al. Prevention of chronic kidney and vascular disease: toward global
health equity--the Bellagio 2004 Declaration. Kidney Int Suppl. 2005;98:51-6.

3. Yamamoto S, Kon V. Mechanisms for increased cardiovascular disease in
chronic kidney dysfunction. Curr Opin Nephrol Hypertens. 2009;18(3):181-8.

4. Vaziri ND. Dyslipidemia of chronic renal failure: the nature, mechanisms, and
potential consequences. Am J Physiol Renal Physiol. 2006;290(2):F262-72.

5. Vaziri ND, Moradi H. Mechanisms of dyslipidemia of chronic renal failure.
Hemodial Int. 2006;10(1):1-7.

6. Vaziri ND. Role of dyslipidemia in impairment of energy metabolism,
oxidative stress, inflammation and cardiovascular disease in chronic kidney
disease. Clin Exp Nephrol. 2014;18(2):265-8.

7. Bulbul MC, Dagel T, Afsar B, Ulusu NN, Kuwabara M, Covic A, Kanbay M.
Disorders of lipid metabolism in chronic kidney disease. Blood Purifi. 2018;
46(2):144-52.

8. Chen S-C, Hung C-C, Kuo M-C, Lee J-J, Chiu Y-W, Chang J-M, Hwang S-J,
Chen H-C. Association of Dyslipidemia with renal outcomes in chronic
kidney disease. PLoS One. 2013,8(2):e55643.

9. Harper CR, Jacobson TA. Managing dyslipidemia in chronic kidney disease. J
Am Coll Cardiol. 2008;51(25):2375-84.

10. Weiner DE, Sarnak MJ. Managing dyslipidemia in chronic kidney disease. J
Gen Intern Med. 2004;19(10):1045-52.

11. Broeders N, Knoop C, Antoine M, Tielemans C, Abramowicz D. Fibrate-
induced increase in blood urea and creatinine: is gemfibrozil the only
innocuous agent? Nephrol Dial Transplant. 2000;15(12):1993-9.

12. Ahmed MH. Niacin as potential treatment for dyslipidemia and
hyperphosphatemia associated with chronic renal failure: the need for
clinical trials. Ren Fail. 2010;32(5):642-6.

13. Ali BH, Al-Salam S, Al Za'abi M, Waly MI, Ramkumar A, Beegam S, et al. New
model for adenine-induced chronic renal failure in mice, and the effect of
gum acacia treatment thereon: comparison with rats. J Pharmacol Toxicol
Methods. 2013;68(3):384-93.

14. Manivannan J, Balamurugan E, Silambarasan T, Raja B. Diosgenin improves
vascular function by increasing aortic eNOS expression, normalize
dyslipidemia and ACE activity in chronic renal failure rats. Mol Cell Biochem.
2013;384(1-2):113-20.

15. Nakagawa T, Yokozawa T, Sano M, Takeuchi S, Kim M, Minamoto S. Activity
of (Tveden-Nyborg et al)-epigallocatechin 3-O-gallate against oxidative
stress in rats with adenine-induced renal failure. J Agric Food Chem. 2004;
52(7):2103-7.

16.  Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin:
preclinical and clinical studies. Anticancer Res. 2003;23(1A):363-98.

17. Tirkey N, Kaur G, Vij G, Chopra K. Curcumin, a diferuloylmethane, attenuates
cyclosporine-induced renal dysfunction and oxidative stress in rat kidneys.
BMC Pharmacol. 2005;5:15.

18. Farombi EO, Ekor M. Curcumin attenuates gentamicin-induced renal
oxidative damage in rats. Food Chem Toxicol. 2006;44(9):1443-8.

19.  Ali BH, Al-Wabel N, Mahmoud O, Mousa HM, Hashad M. Curcumin has a
palliative action on gentamicin-induced nephrotoxicity in rats. Fundam Clin
Pharmacol. 2005;19(4):473-7.

20. Manikandan R, Beulaja M, Thiagarajan R, Priyadarsini A, Saravanan R,
Arumugam M. Ameliorative effects of curcumin against renal injuries
mediated by inducible nitric oxide synthase and nuclear factor kappa B
during gentamicin-induced toxicity in Wistar rats. Eur J Pharmacol. 2011;
670(2-3):578-85.

21, Kuhad A, Pilkhwal S, Sharma S, Tirkey N, Chopra K. Effect of curcumin on
inflammation and oxidative stress in cisplatin-induced experimental
nephrotoxicity. J Agric Food Chem. 2007;55(25):10150-5.

22, Antunes LM, Darin JD, Bianchi NL. Effects of the antioxidants curcumin or
selenium on cisplatin-induced nephrotoxicity and lipid peroxidation in rats.
Pharmacol Res. 2001;43(2):145-50.

23. Ueki M, Ueno M, Morishita J, Maekawa N. Curcumin ameliorates cisplatin-
induced nephrotoxicity by inhibiting renal inflammation in mice. J Biosci
Bioeng. 2013;115(5):547-51.



Ghelani et al. BMC Nephrology

24.

25.
26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

(2019) 20:431

Okada K, Wangpoengtrakul C, Tanaka T, Toyokuni S, Uchida K, Osawa T.
Curcumin and especially tetrahydrocurcumin ameliorate oxidative stress-
induced renal injury in mice. J Nutr. 2001;131(8):2090-5.

Venkatesan N, Punithavathi D, Arumugam V. Curcumin prevents adriamycin
nephrotoxicity in rats. Br J Pharmacol. 2000;129(2):231-4.

Pari L, Murugan P. Tetrahydrocurcumin: effect on chloroquine-mediated oxidative
damage in rat kidney. Basic Clin Pharmacol Toxicol. 2006,99(5):329-34.

Tapia E, Sanchez-Lozada LG, Garcia-Nino WR, Garcia E, Cerecedo A, Garcia-
Arroyo FE, et al. Curcumin prevents maleate-induced nephrotoxicity:
relation to hemodynamic alterations, oxidative stress, mitochondrial oxygen
consumption and activity of respiratory complex I. Free Radic Res. 2014;
48(11):1342-54.

Bas M, Tugcu V, Kemahli E, Ozbek E, Uhri M, Altug T, Tasci Al. Curcumin
prevents shock-wave lithotripsy-induced renal injury through inhibition of
nuclear factor kappa-B and inducible nitric oxide synthase activity in rats.
Urol Res. 2009;37(3):159-64.

Samanta L, Panigrahi J, Bhanja S, Chainy GBN. Effect of turmeric and its
active principle Curcumin on T(3)-induced oxidative stress and hyperplasia
in rat kidney: a comparison. Indian J Clin Biochem. 2010;25(4):393-7.
Nabavi SF, Moghaddam AH, Eslami S, Nabavi SM. Protective effects of
curcumin against sodium fluoride-induced toxicity in rat kidneys. Biol Trace
Elem Res. 2012;145(3):369-74.

Molina-Jijon E, Tapia E, Zazueta C, El Hafidi M, Zatarain-Barron ZL,
Hernandez-Pando R, et al. Curcumin prevents Cr (VI)-induced renal
oxidant damage by a mitochondrial pathway. Free Radic Biol Med.
2011;51(8):1543-57.

Eybl V, Kotyzova D, Bludovska M. The effect of curcumin on cadmium-
induced oxidative damage and trace elements level in the liver of rats and
mice. Toxicol Lett. 2004;151(1):79-85.

Agarwal R, Goel SK, Behari JR. Detoxification and antioxidant effects of
curcumin in rats experimentally exposed to mercury. J Appl Toxicol. 2010;
30(5):457-68.

Ghosh SS, Massey HD, Krieg R, Fazelbhoy ZA, Ghosh S, Sica DA, et al.
Curcumin ameliorates renal failure in 5/6 nephrectomized rats: role of
inflammation. Am J Physiol Renal Physiol. 2009;296(5):F1146-57.

Ghosh SS, Krieg R, Massey HD, Sica DA, Fakhry I, Ghosh S, et al. Curcumin
and enalapril ameliorate renal failure by antagonizing inflammation in 5/6
nephrectomized rats: role of phospholipase and cyclooxygenase. Am J
Physiol Renal Physiol. 2012;302(4):F439-54.

Tapia E, Zatarain-Barron ZL, Hernandez-Pando R, Zarco-Marquez G, Molina-
Jijon E, Cristobal-Garcia M, et al. Curcumin reverses glomerular
hemodynamic alterations and oxidant stress in 5/6 nephrectomized rats.
Phytomedicine. 2013;20(3-4):359-66.

Tapia E, Soto V, Ortiz-Vega KM, Zarco-Marquez G, Molina-Jijon E, Cristobal-
Garcia M, et al. Curcumin induces Nrf2 nuclear translocation and prevents
glomerular hypertension, hyperfiltration, oxidant stress, and the decrease in
antioxidant enzymes in 5/6 nephrectomized rats. Oxidative Med Cell
Longev. 2012;2012:269039.

Soetikno V, Sari FR, Lakshmanan AP, Arumugam S, Harima M, Suzuki K; et al.
Curcumin alleviates oxidative stress, inflammation, and renal fibrosis in remnant
kidney through the Nrf2-keap1 pathway. Mol Nutr Food Res. 2013;57(9):1649-59.
Murugan P, Pari L. Influence of tetrahydrocurcumin on hepatic and renal
functional markers and protein levels in experimental type 2 diabetic rats.
Basic Clin Pharmacol Toxicol. 2007;101(4):241-5.

Chiu J, Khan ZA, Farhangkhoee H, Chakrabarti S. Curcumin prevents
diabetes-associated abnormalities in the kidneys by inhibiting p300 and
nuclear factor-kappaB. Nutrition. 2009;25(9):964-72.

Soetikno V, Watanabe K, Sari FR, Harima M, Thandavarayan RA, Veeraveedu
PT, et al. Curcumin attenuates diabetic nephropathy by inhibiting PKC-alpha
and PKC-betal activity in streptozotocin-induced type | diabetic rats. Mol
Nutr Food Res. 2011;55(11):1655-65.

Sharma S, Kulkarni SK, Chopra K. Curcumin, the active principle of turmeric
(Curcuma longa), ameliorates diabetic nephropathy in rats. Clin Exp
Pharmacol Physiol. 2006;33(10):940-5.

Bayrak O, Uz E, Bayrak R, Turgut F, Atmaca AF, Sahin S, et al. Curcumin
protects against ischemia/reperfusion injury in rat kidneys. World J Urol.
2008;26(3):285-91.

Ghosh SS, Salloum FN, Abbate A, Krieg R, Sica DA, Gehr TW, et al. Curcumin
prevents cardiac remodeling secondary to chronic renal failure through
deactivation of hypertrophic signaling in rats. Am J Physiol Heart Circ
Physiol. 2010;299(4):H975-84.

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

62.

63.

64.

65.

66.

67.

68.

Page 12 of 13

Correa F, Buelna-Chontal M, Hernandez-Resendiz S, Garcia-Nino WR, Roldan
FJ, Soto V, et al. Curcumin maintains cardiac and mitochondrial function in
chronic kidney disease. Free Radic Biol Med. 2013;61:119-29.
Hernandez-Resendiz S, Correa F, Garcia-Nino WR, Buelna-Chontal M, Roldan
FJ, Ramirez-Camacho |, et al. Cardioprotection by curcumin post-treatment
in rats with established chronic kidney disease. Cardiovasc Drugs Ther. 2015;
29(2):111-20.

El-Mahalaway AM. Protective effect of curcumin against experimentally
induced aflatoxicosis on the renal cortex of adult male albino rats: a
histological and immunohisochemical study. Int J Clin Exp Pathol. 2015;8(6):
6019-30.

Jacob A, Chaves L, Eadon MT, Chang A, Quigg RJ, Alexander JJ. Curcumin
alleviates immune-complex-mediated glomerulonephritis in factor-H-
deficient mice. Immunology. 2013;139(3):328-37.

Waly MI, Al Moundhri MS, Ali BH. Effect of curcumin on cisplatin- and
oxaliplatin-induced oxidative stress in human embryonic kidney (HEK) 293
cells. Ren Fail. 2011;33(5):518-23.

Gaedeke J, Noble NA, Border WA. Curcumin blocks multiple sites of the
TGF-beta signaling cascade in renal cells. Kidney Int. 2004;66(1):112-20.
Zingg JM, Hasan ST, Meydani M. Molecular mechanisms of hypolipidemic
effects of curcumin. Biofactors. 2013;39(1):101-21.

Soni KB, Kuttan R. Effect of oral curcumin administration on serum
peroxides and cholesterol levels in human volunteers. Indian J Physiol
Pharmacol. 1992;36(4):273-5.

Alwi |, Santoso T, Suyono S, Sutrisna B, Suyatna FD, Kresno SB, et al. The
effect of curcumin on lipid level in patients with acute coronary syndrome.
Acta Med Indones. 2008;40(4):201-10.

Ali BH, Al-Salam S, Al Suleimani Y, Al Kalbani J, Al Bahlani S, Ashique M,

et al. Curcumin ameliorates kidney function and oxidative stress in
experimental chronic kidney disease. Basic Clin Pharmacol Toxicol. 2018;
122(1):65-73.

Festing MF, Altman DG. Guidelines for the design and statistical analysis of
experiments using laboratory animals. ILAR J. 2002;43(4):244-58.

Ghelani H, Razmovski-Naumovski V, Nammi S. Chronic treatment of (R)-a-
lipoic acid reduces blood glucose and lipid levels in high-fat diet and low-
dose streptozotocin-induced metabolic syndrome and type 2 diabetes in
Sprague-Dawley rats. Pharmacol Res Perspect. 2017;5(3):e00306.
Wongmekiat O, Thamprasert K. Investigating the protective effects of aged
garlic extract on cyclosporin-induced nephrotoxicity in rats. Fundam Clin
Pharmacol. 2005;19(5):555-62.

Hara A, Radin NS. Lipid extraction of tissues with a low-toxicity solvent. Anal
Biochem. 1978;90(1):420-6.

Ali BH, Al-Salam S, Al Husseni |, Kayed RR, Al-Masroori N, Al-Harthi T, Al
Zaabi M, Nemmar A. Effects of gum Arabic in rats with adenine-induced
chronic renal failure. Exp Biol Med. 2010;235(3):373-82.

Adachi Y, Sasagawa |, Tateno T, Tomaru M, Kubota Y, Nakada T. Influence of
adenine-induced chronic renal failure on testicular function in the rat.
Andrologia. 1998,30(2):115-8.

Florens N, Lemoine S, Pelletier CC, Rabeyrin M, Juillard L, Soulage CO.
Adenine rich diet is not a surrogate of 5/6 nephrectomy in rabbits.
Nephron. 2017;135(4):307-14.

Ferrari GO, Ferreira JC, Cavallari RT, Neves KR, dos Reis LM, Dominguez WV,
et al. Mineral bone disorder in chronic kidney disease: head-to-head
comparison of the 5/6 nephrectomy and adenine models. BMC Nephrol.
2014;15(1):69.

Deng H, Jin W, Liao X, He Y. Methodology for designing pathological models of
acute renal failure. Zhongguo Zhong Yao Za Zhi. 1998,23(1):48-52 64.

Ngai HH, Sit WH, Wan JM. The nephroprotective effects of the herbal
medicine preparation, WH30+, on the chemical-induced acute and chronic
renal failure in rats. Am J Chin Med. 2005;33(3):491-500.

Ataka K, Maruyama H, Neichi T, Miyazaki J, Gejyo F. Effects of erythropoietin-
gene electrotransfer in rats with adenine-induced renal failure. Am J
Nephrol. 2003;23(5):315-23.

Vaziri ND. Role of dyslipidemia in impairment of energy metabolism,
oxidative stress, inflammation and cardiovascular disease in chronic kidney
disease. Clin Exp Nephrol. 2014;18(2):265-8.

Liang K, Kim CH, Vaziri ND. HMG-CoA reductase inhibition reverses LCAT
and LDL receptor deficiencies and improves HDL in rats with chronic renal
failure. Am J Physiol Renal Physiol. 2005,288(3):F539-44.

Vaziri ND, Liang KH. Hepatic HMG-CoA reductase gene expression during
the course of puromycin-induced nephrosis. Kidney Int. 1995;48(6):1979-85.



Ghelani et al. BMC Nephrology

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.
87.
88.
89.

90.

91.

92.
93.

94.

95.

(2019) 20:431

Pandak WM, Vlahcevic ZR, Heuman DM, Krieg RJ, Hanna JD, Chan JCM.
Post-transcriptional regulation of 3-hydroxy-3-methylglutaryl coenzyme a
reductase and cholesterol 7a-hydroxylase in rats with subtotal
nephrectomy. Kidney Intl. 1994;46:358-64.

Pahl MV, Oveisi F, Khamiseh G, Vaziri ND. Intestinal absorption and biliary
secretion of cholesterol in rats with nephrotic syndrome. Nephrol Dial
Transplant. 1998;13(6):1446-51.

Vaziri ND, Liang KH. Down-regulation of hepatic LDL receptor expression in
experimental nephrosis. Kidney Int. 1996;50(3):887-93.

Vaziri ND, Sato T, Liang K. Molecular mechanisms of altered cholesterol
metabolism in rats with spontaneous focal glomerulosclerosis. Kidney Int.
2003;63(5):1756-63.

Liu S, Vaziri ND. Role of PCSK9 and IDOL in the pathogenesis of acquired
LDL receptor deficiency and hypercholesterolemia in nephrotic syndrome.
Nephrol Dial Transplant. 2014;29:538-43.

Arafa HM. Curcumin attenuates diet-induced hypercholesterolemia in rats.
Med Sci Monit. 2005;11(7):Br228-34.

Kapoor P, Ansari MN, Bhandari U. Modulatory effect of curcumin on
methionine-induced hyperlipidemia and hyperhomocysteinemia in albino
rats. Indian J Exp Biol. 2008;46(7):534-40.

Kam TS, Wong CY, Kwan PL, Fat-Yiu W, Chiu SM, Chan SW, et al. Effects and
mechanism of turmeric vasorelaxation of the thoracic aorta in
hypercholesterolemic rats. J Med Food. 2012;15(2):190-9.

Babu PS, Srinivasan K. Hypolipidemic action of curcumin, the active
principle of turmeric (Curcuma longa) in streptozotocin induced diabetic
rats. Mol Cell Biochem. 1997;166(1-2):169-75.

Shin SK, Ha TY, McGregor RA, Choi MS. Long-term curcumin administration
protects against atherosclerosis via hepatic regulation of lipoprotein
cholesterol metabolism. Mol Nutr Food Res. 2011;55(12):1829-40.

Pari L, Murugan P. Antihyperlipidemic effect of curcumin and
tetrahydrocurcumin in experimental type 2 diabetic rats. Ren Fail. 2007;
29(7):881-9.

Kim M, Kim Y. Hypocholesterolemic effects of curcumin via up-regulation of
cholesterol 7a-hydroxylase in rats fed a high fat diet. Nutr Res Pract. 2010;
4(3):191-5.

Fan C, Wo X, Qian Y, Yin J, Gao L. Effect of curcumin on the expression of LDL
receptor in mouse macrophages. J Ethnopharmacol. 2006;105(1-2):251-4.
Dou X, Fan C, Wo L, Yan J, Qian Y, Wo X. Curcumin up-regulates LDL
receptor expression via the sterol regulatory element pathway in HepG2
cells. Planta Med. 2008;74(11):1374-9.

Tang Y, Chen A. Curcumin protects hepatic stellate cells against leptin-
induced activation in vitro by accumulating intracellular lipids.
Endocrinology. 2010;151(9):4168-77.

Attman PO, Samuelsson O. Dyslipidemia of kidney disease. Curr Opin
Lipidol. 2009,20(4):293-9.

Kwan BC, Kronenberg F, Beddhu S, Cheung AK: Lipoprotein metabolism
and lipid management in chronic kidney disease. J Am Soc Nephrol. 2007;
18(4):1246-61.

Tsimihodimos V, Mitrogianni Z, Elisaf M. Dyslipidemia associated with
chronic kidney disease. Open Cardiovasc Med J. 2011;5:41-8.

Vaziri ND, Liang K. Down-regulation of tissue lipoprotein lipase expression
in experimental chronic renal failure. Kidney Int. 1996;50(6):1928-35.

Liang K, Vaziri ND. Down-regulation of hepatic lipase expression in
experimental nephrotic syndrome. Kidney Int. 1997,51(6):1933-7.

Jin K, Norris K, Vaziri ND. Dysregulation of hepatic fatty acid metabolism in
chronic kidney disease. Nephrol Dial Transplant. 2013;28(2):313-20.
Takahashi S, Kawarabayasi Y, Nakai T, Sakai J, Yamamoto T. Rabbit very low
density lipoprotein receptor: a low density lipoprotein receptor-like protein
with distinct ligand specificity. Proc Natl Acad Sci. 1992;89(19):9252-6.
Jokinen EV, Landschulz KT, Wyne KL, Ho YK, Frykman PK, Hobbs HH.
Regulation of the very low density lipoprotein receptor by thyroid hormone
in rat skeletal muscle. J Bio Chem. 1994;269(42):26411-8.

Vaziri ND, Liang K. Down-regulation of VLDL receptor expression in chronic
experimental renal failure. Kidney Int. 1997;51(3):913-9.

Kim M, Kim Y. Hypocholesterolemic effects of curcumin via up-regulation of
cholesterol 7a-hydroxylase in rats fed a high fat diet. Nutr Res Pract. 20104(3):191-5.
Li ZY, Ding LL, Li JM, Xu BL, Yang L, Bi KS, et al. (1)H-NMR and MS based
metabolomics study of the intervention effect of curcumin on hyperlipidemia
mice induced by high-fat diet. PLoS One. 2015;10(3):¢0120950.

Seo Kl, Choi MS, Jung UJ, Kim HJ, Yeo J, Jeon SM, et al. Effect of curcumin
supplementation on blood glucose, plasma insulin, and glucose

96.

97.

98.

99.

104.

105.

106.

Page 13 of 13

homeostasis related enzyme activities in diabetic db/db mice. Mol Nutr
Food Res. 2008;52(9):995-1004.

Prabu S, Sumedha, NC.: Ameliorative potential of dimethoxycurcumin: effect
on lipid Profile and changes in tissue fatty acid composition in arsenic
intoxicated rats. In: Advances in Dyslipidemia. edn. Telangana, India: Avid
Science 2016: 2-23.

Um MY, Moon MK, Ahn J, Youl HT. Coumarin attenuates hepatic steatosis
by down-regulating lipogenic gene expression in mice fed a high-fat diet.
Br J Nutr. 2013;109:1590-7.

Um MY, Hwang KH, Ahn J, Youl HT. Curcumin attenuates diet-induced
hepatic Steatosis by activating AMP-activated protein kinase. Basic Clin
Pharmacol Toxicol. 2013;113(3):152-7.

Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K,

et al. Cholesterol efflux capacity, high-density lipoprotein function, and
atherosclerosis. New Engl J Med. 2011,364(2):127-35.

. Vaziri ND. HDL abnormalities in nephrotic syndrome and chronic kidney

disease. Nat Rev Nephrol. 2016;12(1):37-47.

. Liang K, Vaziri ND. Down-regulation of hepatic high-density lipoprotein

receptor, SR-B1, in nephrotic syndrome. Kidney Int. 1999;56(2):621-6.

. Oram JF, Vaughan AM. ATP-binding cassette cholesterol transporters and

cardiovascular disease. Circ Res. 2006;,99(10):1031-43.

. TuY, Sun D, Zeng X, Yao N, Huang X, Huang D, et al. Piperine potentiates

the hypocholesterolemic effect of curcumin in rats fed on a high fat diet.
Exp Ther Med. 2014;8(1):260-6.

Zhao JF, Ching LC, Huang YC, Chen CY, Chiang AN, Kou YR, et al. Molecular
mechanism of curcumin on the suppression of cholesterol accumulation in
macrophage foam cells and atherosclerosis. Mol Nutr Food Res. 2012;56(5):
691-701.

Wahlstrém B, Blennow G. A study on the fate of curcumin in the rat. Acta
Pharmacol Toxicol (Copenh). 1978:43(2):86-92.

Prasad S, Tyagi AK, Aggarwal BB. Recent developments in delivery,
bioavailability, absorption and metabolism of curcumin: the golden
pigment from golden spice. Cancer Res Treat. 2014;46(1):2-18.

. Siviero A, Gallo E, Maggini V, Gori L, Mugelli A, Firenzuoli F, Vannacci A.

Curcumin, a golden spice with a low bioavailability. J Herbal Med. 2015;5(2):
57-70.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Chemicals and apparatus used
	Animals
	Experimental design and treatments

	Biochemical estimations
	Body weight, food intake and water intake
	Determination of serum biochemical parameters
	Determination of urine biochemical parameters
	Determination of hepatic lipids
	Data and statistical analysis

	Results
	Body weight
	Water intake
	Food intake
	Serum total cholesterol
	Serum triglycerides
	Serum HDL cholesterol
	Serum LDL and VLDL cholesterol
	Serum non-esterified fatty acids (NEFA)
	Atherogenic index (AI) and coronary risk index (CRI)

	Kidney biochemical parameters
	Serum creatinine
	Blood urea nitrogen
	Serum albumin
	Urinary volume
	Urinary total protein (proteinuria)
	Urinary creatinine
	Urinary urea nitrogen
	Creatinine clearance
	Hepatic lipid levels

	Discussion
	Conclusion
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

