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Abstract

Background: Chronic kidney disease (CKD) disease affects gut flora by causing dysbiosis and lead to systemic
inflammatory conditions. Here, we provide intestinal flora changes of CKD patients undertook different hemodialysis
therapy.

Methods: From 2017 to 2019, a total of 166 patients from Guangzhou Red Cross Hospital were recruited and
divided into four groups with 17 cases in healthy control group, 47 cases in CKD non-dialysis group, 49 cases in HD
group, and 53 cases in PD group. Intestinal flora genome 16S rDNA sequencing and further bio-informatic analysis
were performed.

Results: Decreased diversity and altered communities of intestinal flora in PD patients, in which microbial diversity
was positive correlated with the albumin level were observed. A total of 20 intestinal flora phyla were detected in
166 fecal samples, divided into 3 dominant intestinal types including Bacteroides-dominant gut type, Firmicutes-
dominant type and Proteobacteria-dominant gut type. Further analyses found 198 genera, the abundance of 86
genera were significantly different. Butyrate-producing taxa as Faecalibacterium in genera level and
Bifidobacteriaceae and Prevotellaceae in family level were dominant genus in CT, CKD, and HD groups, while urease
containing-, indole- and p-cresol-forming taxa as Escherichia in genera and Enterobacteriaceae, Enterococcaceae in
family level was dominated genus in PD group. Number of differential expressed genes in KEGG enrichment
pathways were significantly different in PD group in carbohydrate metabolism, amino acid metabolism, energy
metabolism, translation, and membrane transport.

Conclusion: Our results suggest peritoneal dialysis therapy could result in reduced diversity and altered microbial
communities, with reduced probiotic butyrate-producing taxa and increased urease containing-, indole- and p-
cresol-forming taxa. The disordered intestinal flora can seriously affect the nutrition level in CKD patients with PD
therapy.
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Background

The human microbiome is comprised of about 100 trillion
microbial cells and their encoded genes [1]. The composition
of the gut microbiome varies among individuals and remains
stable under homeostasis [2, 3]. The most abundant bacterial
phyla in a healthy human gut are Bacteroides, Firmicutes,
Actinobacteria, and Proteobacteria [4]. Genetic and environ-
mental factors, including disease, diet and antibiotic use, alter
the type and abundance of the microbiome [2]. This alter-
ation, also known as dysbiosis, causes individuals to become
more susceptible to disease [5]. Hormones such as serotonin,
dopamine, and norepinephrine, and microbial metabolites
including p-cresol sulfate, decyloxysulfate, trimethylamine N-
oxide (TMAOQ), and short-chain fatty acids (SCFAs) secreted
by gut microbiota, can influence various bodily functions [6,
7]. Kidney disease, obesity, metabolic syndrome, cancer, and
cirrhosis were reported to be associated with changed en-
dogenous flora [8-10]. So far, thorough investigations into
gut-microbial-metabolite relationships under disease progres-
sion remain unclear.

Uncontrolled metabolic disorders including CKD, affect
gut flora, promote intestinal permeability, cause dysbiosis,
and can lead to systemic inflammatory conditions [11]. Re-
duced abundance of Lactobacillaceae and Prevotellaceae in
CKD patients has been reported, while Enterobacter and En-
terococcus were observed to be 100 times higher [12]. The se-
cretion of uremic toxins is closely related to microbial
changes in CKD patients [13]. Intestinal microbiota were as-
sociated with inflammatory status and renal function in end-
stage renal disease (ESRD) patients in southern China, with a
decreased proportion of bacteria, and altered intestinal flora
from Prevotella to Bacteroides [14]. CKD animal models have
shown excessive uremia can result in intestinal dysbiosis, in-
testinal barrier dysfunction, and bacterial translocation [15].
Intestinal bacterial changes were found in both dialysis and
non-dialysis CKD patients. Further investigations indicated
that the abundance of Firmicutes and Actinobacteria in peri-
toneal dialysis patients was reduced, and the abundance of
Bacteroides in hemodialysis patients increased [16]. However,
the influence of different renal replacement therapies on
microbiota remains unclear.

In this study, we examined changes in the intestinal
flora of CKD patients by comparing differences in abun-
dance, diversity, and species composition between
healthy humans, CKD non-dialysis patients, HD patients,
and PD patients, providing evidence for personalized
treatment for CKD patients.

Methods

Patient selection

From 2017 to 2019, patients from Guangzhou Red Cross
Hospital were recruited and divided into four groups:
healthy control group, CKD non-dialysis group, HD
group, and PD group. The written informed consent was
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signed by all patients. This study was approved by ethics
committee of the Guangzhou Red Cross Hospital [No.
2017-032-01/02]. The study adhered to the tenets of the
Declaration of Helsinki and the Guidance on Sample
Collection of Human Genetic Diseases by the Ministry
of Public Health of China. The inclusion criteria for pa-
tients in the experiment were as follows: 1) receive nor-
mal diet; 2) capable of self-care; 3) no antibiotics, anti-
tumor drugs, immunosuppressants, and glucocorticoids
over the past 3 months. The exclusion criteria for pa-
tients included the following: 1) those who cannot eat or
use intestinal and/or external nutrition interventions; 2)
digestive diseases including gastrointestinal cancer, bil-
iary tract inflammation, and inflammatory bowel disease;
3) metabolic diseases including obesity, diabetes, and
systemic lupus erythematosus; 4) those who with local
inflammation, systemic infections before treatment.
Basic clinical information of all patients was recorded.
Posterior feces samples were collected and stored at —
80 °C degrees for further analysis.

Intestinal flora genome 16S rDNA sequencing

Total DNA of feces was extracted using a DP328 DNA ex-
traction kit according to the manufacturer’s manual (Tian-
gen, Beijing, China). The total extracted genomic DNA
was qualitatively detected by 1% agarose gel electrophor-
esis, and the concentration was determined using a Qubit*
dsDNA HS Assay Kit. For the 16S rDNA V3 region, an
upstream primer 338F and a downstream primer 534R
were used for amplification and sequencing on Illumina
HiSeq2500 platform (Novogene, Beijing, China).

16S rDNA sequence intestinal flora analysis

The OTU was compared using RDP classifer (v 2.2).
Greengene database was used for 16S bacteria and archaea
genome comparison. Sliver database was used for 18S fun-
gus and UNITE database was used for ITS fungus. The
Observed Species, Chao 1 index, Ace index, Shannon
index, Simpson index, and Good’s coverage was selected
to reflect the Alpha diversity of the samples. PICRUSt was
used to perform three-level Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway and abundance analysis
based on different numbers of 16S rRNA copy numbers.

Statistical analyses

The quantitative data were expressed as mean + standard
deviation. The mean of the two groups was compared by
student’s t-test. The mean of multiple groups was com-
pared by ONE-WAY ANOVA analysis. The chi-square
test was used to compare the rates between groups.
Principal co-ordinates analysis was used to analyze the
differences in beta diversity among different groups. The
dominant intestinal type was analyzed by Multi-
dimensional cluster analysis and Principal Component
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Analysis. All statistical analyses were performed using
SPSS v22.0 (SPSS Inc., Chicago, IL, USA), with p < 0.05
set as the difference test level.

Results

Basic clinical characteristics

A total of 166 patients were enrolled in the study, with
17 in CKD group, 47 in CT group, 49 in HD group, and
53 in PD group. No significant differences in age, gen-
der, and body weight were found among the four groups
(p > 0.05). Renal function tests, including uric acid, blood
urea, nitrogen, and serum creatinine in the healthy con-
trol group were significantly lower than those in the
other three groups (p<0.001). Metabolic status,

Table 1 Comparison of basic clinical information of patients
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including the expression levels of albumin and TC, were
significantly higher in CT group (p <0.001), while FBG
showed no difference among groups (p = 0.29) (Table 1).
Primary kidney diseases were altered among three
groups of CKD patients, cases of chronic nephritis in
CKD, HD, and PD was 4(23.5%), 16 (32.7%) and
21(39.6%), the number of hypertensive nephropathy in
CKD, HD, and PD was 10(58.8%), 27(55.1%) and 22
(41.5%) (p=0.002). In inflammatory conditions, CRP
and IL-6 were significantly higher in CKD patients
(p <0.001) while WBC showed no difference among four
groups (p = 0.18). CKD patients with PD showed a trend
of longer dialysis vintage compared to those with HD
(39.85 + 39.44 month vs. 35.35 + 32.33 month, p = 0.532).

CKD (N=17) CTIN=47) HD(N = 49) PD(N = 53) Total F/)(2 value  p value

M:F 134 2324 28:21 2924 9373 391 0.272
Age 5729+£11.13 5630+ 10.67 59531057 57.70+852 57.80+10.03 0.85 047
Weight (kg) 5770+ 1397 6249 +8.10 5812+11.63 59.73+11.03 59.83+10.88 1.58 0.197
BUN (mmol/L) 2586 +7.80 4.63+093 2353+7.21 1863+661 16.85 £ 10.00 100.37 <0.001
Creatinine (umol/L) 102294 +£349.12  6738+1553 963.14+ 28698  864.09+288.10  684.02 +464.44 133.86 <0.001
UA (umol/L) 452.80+82.88 31839+6324 45363 +88.20 431.17 £89.58 408.08 +£99.28 26.99 <0.001
Albumin (g/L) 35.65+4.05 4213+333 35.06 £ 4.67 3297+435 3645+ 5.54 4355 <0.001
Hb (g/L) 11012+ 14.10 136.72+ 1153 105.84 +16.59 10111+ 2459 11351 +£2342 36.59 <0.001
WBC (1019/L) 7.00+1.96 6.27 +£1.38 735+£283 712+£299 6.94 +2.50 1.67 0.18
CRP 529+267 2214099 513+267 1026 £21.04 596+ 1236 3.86 0.01
IL-6 6.68 +2.98 290+252 6.61£3.32 12.63 +£15.30 749£9.71 10.02 <0.001
FBG 493 +0.66 519+0.79 513+£067 570£3.13 531187 1.24 0.29
HbAC 527+051 491+051 5381066 530+£094 5211073 398 0.009
TC 426 +4.05 4.85+0.67 435+1.00 510£1.16 472+1.02 6.69 <0.001
Dialyze number (3/4/5) - - - 5/45/3 - -
Dialysis vintage (month) - - 3535+3233 39.85+3944 0.63 0.532
Primary disease

Chronic nephritis 4(235) - 16 (32.7) 21 (39.6) 23.792 0.002

Hypertensive nephropathy 10 (58.8) - 27 (55.1) 22 (41.5)

Others 3(17.6) - 6(122) 10 (18.9)
NYHA classification

I 20 (40.8) 24 (453) 4.291 0.117

Il 17 (34.7) 24 (45.3)

Il 12 (24.5) 5094

Coronary disease 1.051 0.305

Yes 29 (59.2) 26 (49.1)

No 20 (40.8) 27 (50.9)

Hypertension 0.962 0.327

Yes 35(714) 33 (623)

No 14 (28.6) 20 (37.7)

(CKD: chronic kidney disease; CT: control; HD: hemodialysis; PD: peritoneal dialysis; M: male; F: female; BUN: Blood Urea Nitrogen: UA: Uric Acid: Hb: Hemoglobin:
WBC: White Blood Ccll: CRP: C-reactive protein: IL-6: Interleukin-6: FBG: Fasting Blood Glucose: HbAc: Glycated hemoglobin: TC: Total cholesterol)
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Comorbidities including coronary disease and hyperten-
sion showed no difference between PD and HD popula-
tions (p =0.305 and p = 0.327). No significant difference
was found on distribution of NYHA classifications (P =
0.117). (Table 1).

Alpha-beta diversity analysis of intestinal flora

Alpha and beta diversity analysis showed that the intes-
tinal flora structure diversity (including Sob index, Chao
index, Ace index, Shannon index, and Simpson index)
and species diversity distance in PD group was signifi-
cantly lower than CKD, CT, and HD groups under the
same measurement depth (p<0.001) (Fig. 1). Further
analysis showed that the express of albumin affects the
alpha diversity, patients showed with lower albumin level
present lower intestinal flora structure diversity and vice
visa (Fig. 2).

Different relative abundance level of bacterial taxa

A total of 20 intestinal flora phyla were detected in 166
fecal samples, namely Firmicutes, Bacteroidetes, Proteo-
bacteria, Actinobacteria, Verrucomicrobia, Fusobacteria,
Cyanobacteria, Synergistetes, Tenericumtes, TM?7,
Chloroflexi, Lentisphaerae, Euryarchaeota, Acidobac-
teria, Chlamydiae, Spirochaetes, OD1, Elusimicrobia,
Parvarchaeota, and unclassified, mostly abundance in
Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria,
and Verrucomicrobia (Fig. 3a). All samples were divided
into 3 dominant intestinal types including Bacteroides-
dominant gut type, Firmicutes-dominant type and
Proteobacteria-dominant gut type, which displayed sig-
nificantly different distributions among the four treat-
ment groups (p<0.01). The relative abundance of
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bacteria within the phylum Bacteroidetes and Firmicutes
were significantly decreased, while relative abundance of
the phylum Proteobacteria was increased in PD group
(Fig. 3b-d).

The genus level composition of each group of intestinal
flora

Further analyses found 198 genera, the abundance of 86
genera were significantly different (Fig. 3b). 42 genera
belong to the Bacteroidetes (7), Proteobacteria (7), Fir-
micutes (17), and Actinobacteria (11) phyla were signifi-
cantly different in PD group, 20 genera belonging to
Bacteroidetes (5), Proteobacteria (4), Fusobacteria (5),
and Firmicutes (6) were significantly different in HD
group, 21 genera belonging to Bacteroidetes (3), Proteo-
bacteria (7), and Firmicutes (11) were significantly differ-
ent in CT group and 3 genera in CKD group belonging
to Bacteroidetes (1), Firmicutes (1), Actinobacteria (1)
were significantly different (Fig. 4). 4 dominant genera
among four groups were: Bacteroides, Faecalibacterium,
Escherichia and Salmonella. Bacteroides and Faecalibac-
terium were dominant genus in CT, CKD, and HD
groups, while Escherichia and Salmonella was dominated
genus in PD group (Fig. 5).

Relative abundance of indole and p-cresol producing taxa
in family level

Bifidobacteriaceae and Prevotellaceae was significantly
decreased, while Enterobacteriaceae, Enterococcaceae
were significantly increased in patients with PD com-
pared with the other groups. A trend of increased level
was found in the relative abundance of Verrucomicrobla-
ceae (Fig. 6).
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Fig. 1 Analysis of alpha and beta diversity of intestinal flora. a Intestinal flora structure diversity including Sob index, Chao index, Ace index,
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Species diversity distance in PD group was significantly lower than CKD, CT, and HD groups.
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Fig. 4 Differences in abundance of bacteria genus between Case group and Control group. Abundance of bacteria genus by LEfSe clustering
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y: Clostridiales

z: Clostridia
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al: Erysipelotrichales
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a5: Fusobacteriia
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b3: Enterobacteriales
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Analysis of intestinal microbial function

High-abundance bacteria KEGG level 1 pathways in the
four groups were significantly enriched in metabolism,
genetic information processing, and environmental in-
formation processing. The following KEGG level 2 path-
ways were significantly enriched in carbohydrate
metabolism, amino acid metabolism, energy metabolism,
translation, and membrane transport. Number of differ-
ential expressed genes in KEGG enrichment pathways:
starch and sucrose metabolism, alanine aspartate and
glutamate metabolism, arginine and proline metabolism,
oxidative phosphorylation, ribosome, aminoacyl tRNA

biosynthesis, and ABC transporters were significantly
different in PD group compared with CT, CKD, and HD
groups (Fig. 7 & Additional file 1: Table S1).

Discussion

Gut microbiota affect physiological functions in CKD pa-
tients by modulating genes involved in host immunity, cell
proliferation, and metabolism [17-19]. The pattern of renal
replacement therapy also appears to influence gut micro-
biota [20]. Our study showed that decreased diversity and
altered communities of intestinal flora in PD patients, in
which microbial diversity was positive correlated with the
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albumin level. A total of 20 intestinal flora phyla were de-
tected in 166 fecal samples, divided into 3 dominant intes-
tinal types including Bacteroides-dominant gut type,
Firmicutes-dominant type and Proteobacteria-dominant
gut type. Further analyses found 198 genera, the abun-
dance of 86 genera were significantly different. Butyrate-
producing taxa as Faecalibacterium in genera level and
Bifidobacteriaceae and Prevotellaceae in family level were
dominant genus in CT, CKD, and HD groups, while Ure-
ase containing-, indole- and p-cresol-forming taxa as
Escherichia in genera and Enterobacteriaceae, Enterococ-
caceae in family level was dominated genus in PD group.
Number of differential expressed genes in KEGG enrich-
ment pathways were significantly different in PD group in
carbohydrate metabolism, amino acid metabolism, energy
metabolism, translation, and membrane transport.
Qualitative and quantitative changes in host microbiome
profile and disruption in gut barrier resulting in gut dysbiosis
was commonly seen among CKD patients [21]. A Chinese
study observed no significant differences in intestinal flora di-
versity between CKD patients and healthy control groups,
suggesting that bacterial diversity was not seriously damaged
in this population [14]. Microbiota dysbiosis, which was dif-
fered between modes of dialysis, was considered a main risk
factor in promoting chronic systemic inflammation in CKD
patients [22]. Besides dialysis modes, age and dialysis vintage

also contributed to the microbiome diversity [20]. Another
Chinese study found that probiotic bacteria was less fre-
quently detected in PD patients, which may impair host in-
testinal barrier and increase the risk of enteric organism
invasion [23]. Diabetic patients could develop impaired renal
function and induce diabetic associated cardiovascular dis-
ease [24, 25]. These diabetic cardiomyopathy patients may
have abnormal bacterial metabolism [26]. Our study has fur-
ther confirmed that different dialysis modes were critical
contributors to microbiota alterations considered that dia-
betic patients have been excluded and no cardiac dysfunction
have been found in our patients.

High-throughput sequencing in our study found that the in-
testinal flora diversity of PD patients was lower than that of
HD and non-dialysis CKD patients, suggested that intestinal
flora was seriously damaged by PD as a renal replacement
therapy. Other investigation further revealed that alpha diver-
sity was closely related to the patient’s inflammatory condition
[14, 20]. Significant relationship between diversity and inflam-
matory factors was not found in our study, however, we re-
vealed that patients who have higher albumin level showed
with more abundance intestinal flora. This result suggested
that people with better alpha diversity of the flora could have
better nutrition. Improve the diversity of bacteria could be an
effective way to improve the malnutrition status of dialysis
patients.
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Colonic bacteria ferment indigestible carbohydrates and
proteins and form short chain fatty acids (SCFAs), so that
distal guts can absorb more rapidly. SCFAs were also used as
cross-feeding nutrients for microorganisms, which were un-
able to digest macromolecules [27, 28] SCFAs can bind to
G-protein-coupled receptors GPR41 and GPR43 for regulat-
ing inflammation in adipose tissue, intestinal cells, and im-
mune cells [29, 30]. A large number of homologous peptides
between human and intestinal bacteria have an autoimmu-
nogenicity effect by binding to HLA-II alleles. Most of the
bacteria containing autoimmune peptides were belonged to
either the phylum Firmicutes or Proteobacteria [31]. Our
study showed the abundance of Proteobacteria was higher
while Bacteroidetes and Firmicutes were lower in the PD
group. This result suggested that the decreased Proteobac-
teria in patients undergoing PD might aggravate the disease
situation. Further analyses on genus level revealed that com-
pared with the other three groups, Bacteroides, Escherichia
and Faecalibacterium was the dominant intestinal type in
the PD group. Escherichia produce indoles which mainly
affect the cardiovascular system and kidney functions and
Faecalibacterium is one of the most abundant human fecal
bacterial populations that produce butyrate, suggesting that

PD treatment may increase toxins released in CKD patients
[32, 33]. With the accumulation of uremic toxins and activa-
tion of inflammatory reactions in CKD patients, there is a de-
crease in qualitative and quantitative properties of probiotics,
which in turn promotes CKD progress [34, 35]. Changed
family population of Bifidobacteriaceae, Prevotellaceae and
Lactobacillaceae can result in reduced butyrate level and lead
to insufficient SCFAs, while families possessed Tryptopha-
nase, indole and p-cresol-forming enzymes including Clostri-
diacease, Enterobacteriaceae and Verrucomicrobiaceae [36).
In our study, decreased SCFA secretion induced by de-
creased Bifidobacteriaceae and Prevotellaceae, increased
toxins secretion induced by Enterobacteriaceae and Entero-
coccaceae indicated that changed population of intestinal
flora may have an adverse effect on CKD patients with PD.
Gut microbiota can also affect immune system stimu-
lation, intestinal epithelial homeostasis, vitamins B and
K synthesis, gastrointestinal motility and function en-
hancement, nutrients absorption, drugs metabolism and
SCFAs and polyamines production [4]. In our study, similar
CKD and HD intestinal flora was correlated with similar ex-
pression of CRP and IL-6. However, significantly decreased
diversity and altered communities of intestinal flora between
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Fig. 7 KEGG pathway of abundance changed intestinal flora. Three levels of KEGG enrichment pathways in CT, CKD, HD and PD group. High-
abundance bacteria KEGG level 1 pathways were significantly enriched in metabolism, genetic information processing, and environmental
information processing. The KEGG level 2 pathways were significantly enriched in carbohydrate metabolism, amino acid metabolism, energy
metabolism, translation, and membrane transport. The KEGG level 3 pathways were significantly enriched in starch and sucrose metabolism,
alanine aspartate and glutamate metabolism, arginine and proline metabolism, oxidative phosphorylation, ribosome, aminoacyl tRNA biosynthesis,

Relative abundance

PD and HD was found correlated with excessive expression
of CRP and IL-6. Butyrate-producing taxa as Faecalibacter-
ium in genera level and Bifidobacteriaceae and Prevotellaceae
in family level were dominant genus in CT, CKD, and HD
groups, while urease containing-, indole- and p-cresol-
forming taxa as Escherichia in genera and Enterobacteria-
ceae, Enterococcaceae in family level was dominated genus
in PD group. Our result indicated that beneficial and harmful
bacteria was imbalanced in PD patients, which was more
likely to induce inflammatory response of ESRD patients.
CRP and IL-6 as inflammatory markers need further
analysis. In this study, functional analysis of the
microbiome with altered expression in CKD patients
under different therapeutic states suggests that
changes in the abundance of certain microbial species
in plays an important role in affecting metabolic func-
tionality and inflammatory response. Notably, a regu-
latory effect on bacterial chemotaxis was found in
level 3 KEGG analysis. Bacteria moved under the con-
trol of a complex signal transduction system, moving
toward the production of beneficial chemicals or away

from unfavorable chemicals. The signal of bacterial
chemotaxis may be the mechanism of escaping the
antibacterial effect of antibiotics and aggravating the
disease, although future investigation is required to
confirm this.

The present study has certain limitations. First, this
was a single-center research, the generalizability of al-
tered microbiota in CKD patients with different
hemodialysis therapy is limited. Second, the lack of ani-
mal model experiments to validate the effect of im-
proved microbial diversity to patient’s malnutrition
status was also a limitation in our study. Further CKD
animal models were needed in verify to verify the pos-
sible role of intestinal flora in recovery of CKD patients.
In spite of these limitations, our results provide informa-
tion regarding the altered microbial diversity and com-
munities in Chinese CKD patients with different
hemodialysis therapy and suggest that we should raise
attention on intestinal flora of CKD patients with PD
therapy. The influence of different primary renal diseases
on microbiota alteration needs further investigation.
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Conclusion

In conclusion, peritoneal dialysis therapy could result in
reduced diversity and altered microbial communities,
with reduced probiotic butyrate-producing taxa and in-
creased urease containing-, indole- and p-cresol-forming
taxa. The disordered intestinal flora can seriously affect
the nutrition level in CKD patients with PD therapy.
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