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Abstract

Background: Gitelman syndrome is a rare salt-losing renal tubular disorder associated with mutation of SLC12A3
gene, which encodes the Na-Cl co-transporter (NCCT). Gitelman syndrome is characterized by hypokalemia,
metabolic alkalosis, hypomagnesemia, hypocalciuria, and renin-angiotensin-aldosterone system (RAAS) activation.
Different SLC12A3 variants may lead to phenotypic variability and severity.

Methods: In this study, we reported the clinical features and genetic analysis of a Chinese pedigree diagnosed with
Gitelman syndrome.

Results: The proband exhibited hypokalaemia, hypomagnesemia, metabolic alkalosis, but hypercalciuria and kidney
stone formation. The increased urinary calcium excretion made it confused to Bartter syndrome. The persistent
renal potassium wasting resulted in renal tubular lesions, and might affect urinary calcium reabsorption and
excretion. Genetic analysis revealed mutations of SLC12A3 gene with c.433C > T (p.Arg145Cys), c.1077C > G
(p.Asn359Lys), and c.1666C > T (p.Pro556Ser). Potential alterations of structure and function of NCCT protein due to
those genetic variations of SLC12A3 are predicted. Interestingly, one sibling of the proband carried the same mutant
sites and exhibited similar clinical features with milder phenotypes of hypokalemia and hypomagnesemia, but
hypocalciuria rather than hypercalciuria. Family members with at least one wild type copy of SLC12A3 had normal
biochemistry. With administration of spironolactone, potassium chloride and magnesium supplement, the serum
potassium and magnesium were maintained within normal ranges.

Conclusions: In this study, we identified compound mutations of SLC12A3 associated with varieties of clinical
features. Further efforts are needed to investigate the diversity in clinical manifestations of Gitelman syndrome and
its correlation with specific SLC12A3 mutations.
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Background
Gitelman syndrome (OMIM#263800) is an autosomal
recessive inherited salt-losing renal tubular disorder.
Gitelman syndrome is characterized with clinical fea-
tures including hypokalemia, renal potassium wasting,
metabolic alkalosis, hypomagnesemia, hypocalciuria, and
RAAS activation with normal blood pressure [1]. Gitel-
man syndrome is associated with mutations of SLC12A3
(solute carrier family 12 member 3) gene, which locates
on chromosome 16q13 and encodes the thiazide-
sensitive Na-Cl cotransporter (NCCT) of distal convo-
luted tubule (DCT) [2]. Till now, there are more than
400 varieties of SLC12A3 related to Gitelman syndrome
have been reported [2–5]. Among those mutations, most
are missense, deletion, insertion, and splice-site muta-
tions [6]. Most SLC12A3 mutations in Gitelman syn-
drome are found as simple or complex heterozygous
mutations, and few of them are homozygous [7].
The clinical symptoms of Gitelman syndrome are vari-

able, including muscle weakness, paresthesia, numbness,
polyuria, and growth retardation in children [2]. Some
patients are asymptomatic or mildly symptomatic, or
only exhibit non-specific fatigue, leading to the frequent
misdiagnosis. Disordered renal reabsorption of sodium
and chloride leads to a series of pathophysiological
changes and clinical manifestations, including decreased
blood volume, and activated renin-angiotensin aldoster-
one system (RAAS). Severe and persistent hypokalemia
may lead to glucose intolerance, cardiac and renal dys-
function. Bartter syndrome is the most important gen-
etic disorder to consider in the differential diagnosis of
Gitelman syndrome, since both exhibit hypokalemia,
metabolic alkalosis, and increased plasma renin activity
and aldosterone levels with normal blood pressure. Such
similar phenotypes as those diseases share can make dif-
ferential diagnose challenging; however, urinary calcium
excretion is often considered to be an important clue to
distinguish these two disorders [8].
In this study, we reported a Chinese familial Gitelman

syndrome, and identified compound mutations of
SLC12A3 with c.433C > T (p.Arg145Cys), c.1077C > G
(p.Asn359Lys), and c.1666C > T (p.Pro556Ser). The pro-
band presented hypercalciuria and renal calcification,
exhibiting Bartter syndrome-like biochemical pheno-
types. Further analysis of genotype-phenotype correl-
ation analysis is needed to provide deeper insights into
Gitelman syndrome.

Methods
Patient recruitment
Participants were recruited from a Chinese pedigree.
The diagnosis of Gitelman syndrome was based on clin-
ical symptoms, biochemical parameters and genetic ana-
lysis of SLC12A3 mutations. All participants denied a

history of laxatives, diuretics, or other agents including
insulin, β-receptor activator or Chinese herbal medicine.
This study was approved by the ethics committee of the
Affiliated Hospital of Qingdao University.

Biochemistry tests
The peripheral blood sample and urine sample were col-
lected. The blood and urine electrolytes were measured
with an automatic biochemical analyzer. Plasma renin
activity, plasma angiotensin, and plasma aldosterone
were measured using a radioimmunoassay.

Genetic analysis
Genomic DNA was extracted from peripheral blood samples
collected from participants using the QIAamp Blood DNA
Mini Kit (QIAGEN, USA) according to the manufacturer’s
protocol. After amplification using 2X polymerase chain
reaction (PCR) MasterMix polymerase (Tiangen, China) by
ABI9700 PCR (Life technology, USA), the products were
captured and purified with Panel probe (Illumine Inc., USA),
then directly sequenced on the ABI 3500 automated DNA
sequencer (Life technology, USA). Mutations were detected
using next generation sequencing (NGS) and subsequently
confirmed using Sanger sequencing. We investigated 40
genes reported to be associated with Gitelman syndrome or
Bartter syndrome, including CLCNKA, CLCNKB, BSND,
LAMC, LAMB, ALMS, EDAR, CASR, DSP, BFSP2,
TMEM67, PLEC, KIF7, SLC12A3, KRT9, KRT10, KRT14,
PNPLA6 and so on. To assess the pathogenicity of the vari-
ants, those variants were analyzed with PolyPhen-2 (http://
genetics.bwh.harvard.edu/pph2/), Mutation Taster (http://
mutationtaster.org), PROVEAN and SIFT (http://provean.
jcvi.org/) as alignment reference databases. Gene mutation
databases such as 1000 Genomes, dbSNP, and Uniprot were
used for reference genome alignment.

Results
Clinical manifestations of the proband
A 42-year-old male was presented to hospital with chief
complaint of fatigue, repeated muscle weakness and par-
alysis over ten-year period. Laboratory investigation exhib-
ited hypokalemia, hypomagnesemia, increased urinary
potassium excretion, activated RAAS, hypercalcemia and
hypercalciuria (Table 1). The fractional excretion rate of
potassium (FEK%) was significantly increased to 30.5–
49.2% (normal range 8–12%), suggesting that hypokalemia
is resulted from renal potassium loss. Thyroid function,
cortical and adreno-corticotropic hormone (ACTH) were
normal. Other possible causes of hypokalemia such as
thyrotoxic periodic paralysis, renal tubular acidosis and
hypercortisolism were excluded. Serum calcium was
slightly increased, with elevated urinary calcium excretion
(FECa 2.66%, urinary calcium to creatine ratio 0.70) (Table
1). The glucose stimulated insulin secretion (GSIS) test
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showed the delayed insulin release and insulin resistance.
Renal calcification was detected by computed tomography
(CT) (Fig. 1A-D). Kidney biopsy revealed the large vacu-
olar degeneration or atrophy in renal tubular cells (Fig.
1E-H), suggesting that renal tubular lesions might be asso-
ciated with persistent renal potassium wasting.
The patient was supplied with potassium chloride sus-

tained release tables, spironolactone and magnesium.
During the fellow-up, serum potassium and magnesium
levels were maintained within normal range.

Biochemistry profiles of the other pedigree relatives
Plasma biochemical results showed that one of pro-
band’s sister (II-4, Fig. 2A) showed Gitelman syndrome-
phenotypes with hypokalemia, hypomagnesaemia,
elevated renin-aldosterone level, and normal blood pres-
sure, but with normocalcemia and hypocalciuria (Table
1). The sister was therefore administrated with potas-
sium chloride, and the serum potassium level was cor-
rected into normal range, without symptoms of fatigue,
muscle weakness, tetany, or paresthesia during the treat-
ment. The levels of serum potassium, sodium, calcium,
magnesium, urinary potassium and calcium were unre-
markable in the other relatives of the pedigree (Table 1).

Genetic analysis
Sequencing of SLC12A3 gene was performed on the fa-
milial relatives of the proband. Genetic analysis revealed
that the proband and sibling II-4 carried same

compound heterozygous mutations c.433C > T
(p.Arg145Cys), c.1077C > G (p.Asn359Lys), and
c.1666C > T (p.Pro556Ser). His father (I-1) and son (III-
2) carried c.1077 C > G (p.Asn359Lys). His mother (I-2)
and the other siblings (II-1, II-2, II-5) carried c.433 C >
T (p.Arg145Cys) and c.1666 C > T (p.Pro556Ser), and
showed phenotypically normal biochemistry (Fig. 2,
Supplement figure, Tables 1 and 2). These results sug-
gested that c.433C > T and c.1666C > T located on the
same chromosome (in cis), while c.1077C > G represent-
ing the trans variant led to the compound heterozygosity
in the proband and sibling (II-4). The frequency of these
variants was examined in the reference database. The
variant c.433C > T was not identified in 1000 Genomes,
but was examined in gnomAD (0.000012) and Esp6500
(0.000077) at very low frequency. The variant c.1077C >
G was identified in 1000 Genomes (0.0001997). The
variant c.1666C > T was not identified in 1000 Genomes,
but was examined in gnomAD at low frequency
(0.00002). The potential pathogenicity of those three
variants were studied using prediction bioinformatics
(Table 2). In addition, no mutations were detected in
other 40 genes reported to be associated with Gitelman
and Bartter syndrome, including CLCNKA/CLCNKB
(encodes the chloride channel ClC-Kb) and BSND (en-
codes chloride channel accessory subunit), KCNJ1 (en-
codes the thick ascending limb potassium channel), and
CASR (encodes Calcium-sensing receptor) were not
detected.

Table 1 Biochemical profiles and genetic variants of the Gitelman syndrome pedigree

I-1 I-2 II-1 II-2 II-4 II-5 II-6 III-2 Normal

Age/sex 79 M 79F 55F 53 M 48F 47F 42 M 20 M

Biochemistry profile

Serum K (mmol/L) 3.94 4.19 4.35 4.01 3.08↓ 4.13 1.9–2.8↓↓ 4.02 3.5–5.5

Serum Mg (mmol/L) 0.99 0.85 0.99 0.95 0.68↓ 0.97 0.71↓ 0.98 0.8–1.02

Serum Ca (mmol/L) 2.36 2.31 2.47 2.37 2.5 2.32 2.48–2.6 2.42 2.1–2.52

FEK (%) 6.56 6.33 5.56 8.12 12.66↑ 6.38 30.5–49.2↑↑ 5.08 8–12%

uCa/Cr 0.29 0.30 0.34 0.19 0.03–0.07↓ 0.28 0.7↑ 0.33

FECa (%) 0.46 0.73 0.61 0.42 0.05–0.14↓ 0.51 2.66↑ 0.54

RAAS (lying condition)

Renin (ng/mL/hr) – – – – 2.47 – 3.58 – 0.15–2.3

Aldosterone (pg/mL) – – – – 79.53 – 123.72 – 30–160

RAAS (standing condition)

Renin (ng/mL/hr) – – – – 9.36 – > 13.56 – 0.1–6.5

Aldosterone (pg/mL) – – – – 143.5 – 279.65 – 70–300

Genetic variants c.1077C > G c.433C > T
c.1666C > T

c.433C > T
c.1666C > T

c.433C > T
c.1666C > T

c.433C > T
c.1077C > G
c.1666C > T

c.433C > T
c.1666C > T

c.433C > T
c.1077C > G
c.1666C > T

c.1077C > G

p.Asn359Lys p.Arg145Cys
p.Pro556Ser

p.Arg145Cys
p.Pro556Ser

p.Arg145Cys
p.Pro556Ser

p.Arg145Cys
p.Asn359Lys
p.Pro556Ser

p.Arg145Cys
p.Pro556Ser

p.Arg145Cys
p.Asn359Lys
p.Pro556Ser

p.Asn359Lys
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Three-dimensional structure prediction of NCCT and the
potential dysfunction
The SLC12A3-encoded NCCT protein contains 12
transmembrane segments as well as N- and C-terminal
domains. We identified the alteration of NCCT structure
induced by the compound mutations of SLC12A3
(C433T, Arg145Cys; C1077G, Asn359Lys; and C1666T,
Pro556Ser) (Fig. 3), using the SWISS-MODEL work-
space (http://swiss-model.expasy.org). Results indicate
that amino acid change in NCCT protein due to the

missense mutations of SLC12A3 might lead to alteration
of NCCT protein structures that can affect function,
resulting in the electrolyte disturbance.

Discussion
In this study, we reported a Chinese pedigree of Gitel-
man syndrome with heterozygous compound mutations
of SLC12A3, exhibiting hypokalemia and hypomagnes-
emia. However, the proband exhibited hypercalciuria
and renal calcification, which made it difficult to

Fig. 1 Imaging manifestations and renal biopsy to show renal lesions. A-D Computed tomography (CT) scan of the proband. Arrows to show
renal calcification. C and D are the magnification of A and B, respectively. E-H Renal pathomorphism of the patient to show renal tubular lesions.
E. Hematoxylin-eosin (HE) staining. F. Periodic acid Schiff (PAS) staining. G. Sliver methenamine (SM) staining. H. Congo red staining. Those show
renal tubular atrophy, epithelial cell edema, and the thickening of basal membrane. The vacuolar degeneration of tubular epithelial cells and loss
of brush border were observed. SM and Congo red staining were negative. (× 200) Arrowheads in panel E indicate degenerated tubular epithelial
cells. The scale bar in panel E-H stands for 100 μm
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differentiate from Bartter syndrome (especially type III).
We identified variants of SLC12A3, c.433C >T
(p.Arg145Cys), c.1077C>G (p.Asn359Lys), and c.1666C>T
(p.Pro556Ser), but no mutations found in CLCNKA/
CLCNKB, BSND, KCNJ1, CASR that are known causing Bat-
ter syndrome. Therefore, clinical diagnosis of Gitelman syn-
drome was made, and the identified SLC12A3 variations
were predicted to contribute clinical features of Gitelman

syndrome. With administration of aldosterone antagonist
spironolactone, potassium and magnesium supplement, the
serum potassium and magnesium was maintained in nearly
normal range during fellow-up. The phenotype variability
may be associated with the pathogenic variabilities of
SLC12A3 mutations. Genetic analysis is a useful tool for the
diagnosis and differential diagnosis of such similarly-
presenting diseases as Gitelman syndrome and Bartter

Fig. 2 Genetic analysis of SLC12A3 mutations in the pedigree of Gitelman syndrome. A Pedigree of the family structure. Marked symbols to show
patients carried compound heterozygous mutations of SLC12A3. Mutations of c.433 C > T and c.1666 C > T was presented as black, and c.1077
C > G was showed as grey. Circles present females, and squares present males. Arrow shows proband. The III-1 and III-2 show normal phenotypes,
without features of Gitelman syndrome. B Sequencing results of variants of SLC12A3. The patient (II-6, proband) and his mother (I-2), brother (II-2)
and sisters (II-1; II-4; II-5) carried heterozygous mutation of C433T (Arg145Cys) and C1666T (Pro556Ser) in Exon 3 and 13 of SLC12A3, respectively.
Heterozygous mutation of C1077G (Asn359Lys) in Exon 8 was detected in the patient (II-6, proband), his father (I-1), his son (III-2), and the sister
with Gitelman syndrome (II-4). Arrows indicate heterozygous nucleotide substitutions
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syndrome. Further investigation is needed to provide better
understanding of genotype-phenotype association of NCCT
dysfunction in Gitelman syndrome.
Gitelman syndrome is a salt-losing tubulopathy with

the clinical features of hypokalemic alkalosis, hypomag-
nesemia and hypocalciuria. Chronic hypokalemia leads
to symptoms of weakness, fatigue, thirst, and paralysis.
Severe cases can cause rhabdomyolysis, ventricular ar-
rhythmias, or even sudden cardiac arrest [9]. Gitelman
syndrome is associated with dysfunction of NCCT pro-
tein encoded by SLC12A3 gene in the renal DCT. The
decreased reabsorption of Na+ and Cl− leads to compen-
satory excessive exchange through Na+/K+ and Na+/H+

pumps, resulting in excessive K+ and H+ excretion and
hypokalemic alkalosis. In a small minority of Gitelman
syndrome patients, mutations in the CLCNKB gene en-
coding the chloride channel ClC-Kb have been identified
[10].
We identified compound mutations of SLC12A3,

c.433C > T (p.Arg145Cys), c.1077C > G (p.Asn359Lys),
and c.1666C > T (p.Pro556Ser). The proband and his af-
fected sister carried three compound heterozygous mu-
tations, suggesting that c.433 C > T and c.1666 C > T
probability occurred in cis on one allele, and c.1077C >
G occurred in trans. Interestingly, the other relatives
with only a single affected chromosome show normal

biochemistry. The phenotypes are more severe in pa-
tients with more than one mutated allele, with lower
serum potassium level, which were more difficult to be
corrected with potassium supplements [6, 11].
Bartter syndrome (especially type III) is the most im-

portant renal salt-wasting disease which should be con-
sidered as the differential diagnosis of Gitelman
syndrome. Bartter syndrome is also characterized by
hypokalemia, metabolic alkalosis, polyuria, increased
renin activity and aldosterone levels, but without hyper-
tension or edema. It exhibits the increased urinary cal-
cium excretion, but rarely leads to nephrocalcinosis.
Bartter syndrome could be caused by mutations of
NKCC2 (Na+-K+-2Cl− cotransporter) expressed in the
thick ascending limb (TAL) of Henle loop (Type 1 Bart-
ter Syndrome) [12], ROMK (outwardly rectifying potas-
sium channel) (Type 2 Bartter Syndrome), or CLCNKB
(chloride channel) (Type 3 Bartter Syndrome) which is a
regulator of NKCC2. Type 4 Bartter Syndrome is in-
duced by mutations of both the kidney-specific chloride
channel ClC-Ka and ClC-Kb, leading to dysfunction of
Cl− reabsorption. Activating mutations of calcium-
sensing receptor (CaSR) suppresses the NKCC2 and
ROMK expression to induce type 5 Bartter syndrome
[13]. The site of defect in Bartter syndrome is at the
TAL of the Henle loop, whereas in Gitelman syndrome

Table 2 Summary of the variants of SLC12A3 in the pedigree of Gitelman syndrome

Exon Nucleotide
mutations

Amino acid
variants

Variant
type

AF in
1000G

gnomAD_
exome

Esp6500 PolyPhen-
2

PROVEAN score Mutation
Taster

SIFT

3 c.433 C > T p.Arg145Cys missense ND 0.000012 0.000077 0.999 −7.139
(Deleterious)

0.9999
(Disease)

0

8 c.1077 C > G p.Asn359Lys missense 0.00019 ND ND 1.000 −5.706
(Deleterious)

0.9999
(Disease)

0

13 c.1666 C > T p.Pro556Ser missense ND 0.00002 ND 0.331 −7.03
(Deleterious)

0.9999
(Disease)

0.002

ND not identified

Fig. 3 The model structure of Na-Cl cotransporter (NCCT) protein with variants induced by novel mutations of SLC12A3 to show potential influence.
The differences of modeled structure compared to wild type (A) were indicated in circles. The visible differences of protein structure was induced by
(B) co-existence of c.433 C > T (p.Arg145Cys) and c.1666 C > T (p.Pro556Ser), or (C) c.1077 C > G (p.Asn359Lys) lead to differences from wild type
protein structure. It may induce the alteration of the function of NCCT
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is at the renal DCT [14]. Gitelman syndrome used to be
thought as a mild type of Bartter syndrome. However,
the pathogenesis and clinical characteristics are different.
Bartter syndrome typically presents in infancy or early
childhood, with more severe clinical manifestations and
complications, such as severe electrolyte derangements,
short stature, polyuria, and hypercalciuria induced
nephrocalcinosis [15]. Gitelman syndrome usually shows
hypomagnesaemia with increased urinary magnesium
excretion (FEMg > 4%), but lower urinary calcium excre-
tion (uCa/uCr < 0.2) [8]. A diuretic loading test using
furosemide and hydrochlorothiazide can be helpful in
differentiating Gitelman syndrome from Bartter syn-
drome [16].
Hypocalciuria in Gitelman syndrome is generally a re-

sult of the increased calcium reabsorption in the prox-
imal tubule and distal renal unit, which is caused by
NCCT dysfunction [17]. In this report, the proband ex-
hibited hypokalemia, hypomagnesaemia, metabolic alkal-
osis, but with hypercalciuria, similar to the features of
Bartter syndrome, which makes it confused for differen-
tial diagnosis. It is contradicted with the features of
hypocalciuria in classic Gitelman syndrome. Chronic
renal potassium loss can cause renal tubular epithelial
cell injury or vacuolar deformation to reduce the re-
absorption of calcium [18]. The persistent renal potas-
sium wasting might result in renal tubular lesions, and
affect urinary calcium reabsorption and excretion, lead-
ing to persistent hypercalcuria. Additionally, loss-of-
function of NCCT up-regulates the expression of intes-
tinal calcium transporter, and increases calcium uptake
in digestive tract [19]. Hypercalcemia inhibits PTH re-
lease via negative feedback; conversely, the suppressed
PTH level reduces the calcium reabsorption by the renal
tubule, and increases urinary calcium excretion. The pa-
tient described here also has diabetes mellitus. Hypergly-
cemia causes osmotic diuresis leading to urinary calcium
excretion. Finally, increased urinary calcium excretion
and chronic hypomagnesaemia are the causes of renal
calcification. The relationship between mutated gene
sites and urinary calcium levels has not been reported. It
is unclear whether hypercalcuria is associated with three
variants of SLC12A3.
Patients with Gitelman syndrome have a tendency

of glucose intolerance and impaired insulin secretion
[20]. Potassium plays an important role in the regula-
tion of insulin release. Reduced extracellular potas-
sium ion concentration could suppress the insulin
secretion and release via ATP-sensitive potassium
channel on beta-cells. Long-term low potassium and
magnesium level is one of the factors for diabetes de-
velopment. In addition, hyperaldosteronism was also
reported to promote insulin resistance [21]. Studies
have indicated that Gitelman syndrome can be

combined with autoimmune diseases such as Graves’
disease, Hashimoto’s thyroiditis, IgA nephropathy,
Sjogren’s syndrome, or latent autoimmune diabetes in
adults (LADA) [22, 23].
The therapeutic strategy for Gitelman syndrome

focuses on the correction of electrolyte disturbance,
especially potassium and magnesium replacement.
The level of serum magnesium may affect the severity
and effect of potassium supplement [6, 24]. Other
therapeutic options include the inhibitors of the sec-
ondary elevated RAAS, such as using non-selective or
selective aldosterone antagonist spironolactone or
eplerenone, or NaCl transporter blockers such as
potassium-sparing diuretic aminophenidine. The loss-
of-function mutations in the SLC12A3 gene result in
Gitelman syndrome. Thus, the thiazide diuretics
should be avoided for Gitelman syndrome patients as
long-term treatment option [25]. Non-steroidal anti-
inflammatory drugs (NASIDs) such as indomethacin
can suppress renin secretion by inhibiting renal pros-
taglandin E2 (PGE2) synthesis, and ameliorate the up-
regulation of aldosterone level induced by potassium
supplement. It also could increase potassium level
without worsening sodium and volume depletion in
Gitelman syndrome patients [26]. However, the
gastrointestinal side effect and interstitial renal dam-
age make the application to be limited.

Conclusions
In this study, we reported a pedigree of Gitelman syn-
drome and identified compound mutations of SLC12A3.
Combined with clinical features, biochemistry profiles
and genetic analysis, the diagnose could be made. The
proband exhibited persistent hypercalcuria, which is
contrary to the typical biochemical alteration in Gitel-
man syndrome. Diagonotic procedures combined clinical
features and biochemistry profiles with genetic counsel-
ling are necessary for correctly differentiate Gitelman
syndrome from Bartter syndrome. Further investigation
will explore the correlation between genotype and
phenotype are needed for provide better understanding
of Gitelman syndrome.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12882-020-01996-2.

Additional file 1. The variants of SLC12A3 identified in this pedigree of
Gitelman syndrome. A. The mutant sequence of SLC12A3 mRNA and
amino acid. Red characters to show the mutant nucleotide or amino
acid. B. The model of Na-Cl cotransporter (NCCT) and affected amino acid
site. NCCT is a 12 times transmembrane structure with 1030 amino acids.
Star and red to show the mutant amino acids and sites, Arg145Cys,
Asn359Lys, and Pro556Ser located in the respective spots.
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