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Abstract

Background: Acute kidney injury (AKI) is defined as a sudden event of kidney failure or kidney damage within a
short period. Ischemia-reperfusion injury (IRI) is a critical factor associated with severe AKI and end-stage kidney
disease (ESKD). However, the biological mechanisms underlying ischemia and reperfusion are incompletely
understood, owing to the complexity of these pathophysiological processes. We aimed to investigate the key
biological pathways individually affected by ischemia and reperfusion at the transcriptome level.

Results: We analyzed the steady-state gene expression pattern of human kidney tissues from normal (pre-ischemia),
ischemia, and reperfusion conditions using RNA-sequencing. Conventional differential expression and self-
organizing map (SOM) clustering analyses followed by pathway analysis were performed. Differential expression
analysis revealed the metabolic pathways dysregulated in ischemia. Cellular assembly, development and migration,
and immune response-related pathways were dysregulated in reperfusion. SOM clustering analysis highlighted the
ischemia-mediated significant dysregulation in metabolism, apoptosis, and fibrosis-related pathways, while cell
growth, migration, and immune response-related pathways were highly dysregulated by reperfusion after ischemia.
The expression of pro-apoptotic genes and death receptors was downregulated during ischemia, indicating the
existence of a protective mechanism against ischemic injury. Reperfusion induced alterations in the expression of
the genes associated with immune response such as inflammasome and antigen representing genes. Further, the
genes related to cell growth and migration, such as AKT, KRAS, and those related to Rho signaling, were
downregulated, suggestive of injury responses during reperfusion. Semaphorin 4D and plexin B1 levels were also
downregulated.

Conclusions: We show that specific biological pathways were distinctively involved in ischemia and reperfusion
during IRI, indicating that condition-specific therapeutic strategies may be imperative to prevent severe kidney
damage after IRI in the clinical setting.
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Background
In the kidney, ischemia-reperfusion injury (IRI) is char-
acterized with the temporary deficiency of oxygen due to
restricted blood flow, followed by the sudden restoration
of oxygen supply. The result is acute kidney injury
(AKI), which may vary from a subtle kidney dysfunction
to the need for renal replacement therapy [1]. Physiolo-
gically, approximately 66% AKI are induced by IRI or
acute tubular necrosis [2, 3]. According to a recent
meta-analysis of 154 studies based on the strict
definition by Kidney Disease: Improving Global Out-
comes (KDIGO), 23% AKI incidence occur during
hospitalization and mortality is reported in approxi-
mately 50–80% patients with severe AKI [4]. Hence,
interventions such as continuous renal replacement
therapy have been increasingly adopted as a treatment
strategy in patients with severe AKI, which has evolved
into a socioeconomic burden [5].
AKI is closely interconnected and integrated with

chronic kidney disease (CKD). AKI is a risk factor of in-
cidence of CKD, which itself is a risk factor of AKI epi-
sodes [6, 7]. Moreover, AKI-induced CKD is most likely
to progress to stage 4 CKD and decrease survival time
[6]. The continuation of the inflammatory response of
the kidney tissue following AKI results in incomplete re-
covery and accelerates the process of injury, thereby pro-
voking CKD. Therefore, the understanding of the
mechanism underlying the development of AKI is crit-
ical to prevent its progression into ESKD.
The various pathophysiological characteristics of AKI

pose difficulties to evaluate the underlying mechanism,
thereby contributing to poor patient prognosis [8]. For
instance, serum creatinine level may not completely re-
flect the loss of kidney function during early stages [9].
Further, considering the ethical and regulatory obstacles
related to human clinical studies, many studies on AKI
have been conducted as observational or treatment re-
search using murine animals [10–13]. These animal
models of AKI mostly include young male mice with
normal kidney functions that are evidently different from
the actual clinical condition in human patients [14]. In
addition, it is rather difficult to obtain pre-hypoxic kid-
ney tissues from healthy humans for comparative and
analytical purposes. Together these reasons have hin-
dered research on human AKI and obstructed the devel-
opment of treatment strategies for the prevention of
AKI caused by IRI.
In the present study, we investigated the key genes and

biological pathways affected separately after ischemia and
reperfusion during IRI in human kidney tissues. We per-
formed RNA sequencing (RNA-seq) to examine changes
in the gene expression pattern via conventional differential
gene expression and self-organizing map (SOM) clustering
analyses [15]. The important contributions of our study

are as follows: First, no study has been conducted on IRI
using human kidney tissues. Therefore, we believe that
our findings could improve our understanding of the
mechanisms of IRI in humans. Second, this is the first
study to perform transcriptome analysis using next-
generation sequencing such as RNA-seq separately in is-
chemia and reperfusion within a short period, although a
recent study reported RNA-seq result before and after
kidney transplantation [16]. Our study allows us to
understand the biological mechanism of ischemia and
reperfusion through the analysis of the whole tran-
scriptome data obtained for the human kidney tissue.
Third, the time-series IRI tissue analysis facilitates the
identification of the expression trajectory of the key
genes affected by ischemia and reperfusion. Lastly,
machine learning algorithms help us to broaden our
knowledge by highlighting the expression patterns of
specific genes of interest from large-scale gene ex-
pression data during IRI.
We reveal the specific genes and pathways that are in-

volved separately in ischemia and reperfusion during IRI
in the human kidney. We suggest that a condition-
specific therapeutic approach may be imperative for the
effective prevention of severe kidney damage after IRI in
the clinical setting. Further investigations are warranted
to understand the functions of the newly discovered bio-
logical signatures related to IRI.

Methods
Patients
Five male patients scheduled for total nephrectomy
owing to renal cell carcinoma or transitional cell carcin-
oma were enrolled in the study. Their average age was
64.8 years and their kidney functions before surgery were
near normal state (mean creatinine: 0.89 mg/dL, mean
estimated glomerular filtration rate [eGFR]: 88.1
mL·min·− 11.73 m− 2, mean hemoglobin: 14.2 g/dL) (Sup-
plementary Table S1). The kidney cortical tissue was ob-
tained by gun biopsy at three time points as follows: pre-
ischemia (considered as a normal condition), ischemia
(after 15 min of hypoxia), and after 10 min of reperfusion
(Fig. 1a). The tissue samples were immediately trans-
ferred to individual cryotubes prefilled with 0.5 mL
RNAlater® (QIAGEN Inc., Hilden, Germany) and stored
at room temperature for 24 h. RNAlater® was removed
following incubation, and tissues was stored at − 80 °C
according to the manufacturer’s instructions until
analysis. Our study protocol was approved by the Pusan
National University Hospital Ethics Committee (IRB
number H-17020002-051). All participants provided
written informed consent as requested by our Ethics
Committee, and all procedures were implemented in ac-
cordance with the Helsinki Declaration.
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RNA-seq analysis
To identify the changes induced by ischemia and reper-
fusion at the transcriptomic level, we analyzed the
steady-state gene expression pattern during pre-ischemia
(normal), ischemia, and reperfusion using RNA-seq (Fig.
1b). Total RNA was isolated from the kidney cortex of
five male patients at each condition using mirVana™
miRNA Isolation Kit (ThermoFisher, Inc., Seoul, Korea).
The RNA quality was assessed using 2100 Expert Bioa-
nalyzer with RNA 6000 Nano Kit (Agilent, Inc., Santa
Clara, CA, USA). Samples with RNA integrity number >
7 were prepared using Illumina TruSeq Standard mRNA
Prep kit (Catalog #RS-122-2103; Illumina, San Diego, CA,
USA). After quantitative polymerase chain reaction
(qPCR) using SYBR Green PCR Master Mix (Applied Bio-
systems), the libraries were combined such that the
indexed sample was present at equimolar concentrations
in the pool. Cluster generation was carried out in the flow
cell on the cBot automated cluster generation system
(Illumina). The flow cell was loaded on HiSeq 2500 sequen-
cing system (Illumina), and sequencing was performed with
2× 100 bp read length. RNA-seq was carried out by DNA
Link, Inc., Seoul, Korea (http://www.dnalink.com/).
FastQC (http://www.bioinformatics.babraham.ac.uk/pro-

jects/fastqc/) was conducted to assess the quality of RNA-
seq data. The RNA-seq data were quantified using an
alignment-free tool, Salmon, developed by Patro et. al in
2017 that estimates the relative abundance of all transcripts

[17]. GRCh38.p13 was used as the reference transcriptome
to quantify read counts. The general information of RNA-
seq is shown in Supplementary Table S2, and RNA-seq
data are available in Gene Expression Omnibus (GEO)
database under the accession number GSE142077.

Differential expression analysis
We employed tximport [18] with Bioconductor differen-
tial gene expression package using R (version 3.5.1) to
assemble count values from each sample. The assembled
count values were used as the input of DESeq2 Biocon-
ductor package [19]. The significantly differentially
expressed genes (DEGs) between groups were defined at
cut-off criteria of |log2 fold-change| ≥ 1 and p-value <
0.05. Significantly enriched pathways were examined for
the identified DEG sets.

Self-organizing map analysis
To identify the trajectory patterns of gene expression
across all three time points, pre-ischemia, ischemia, and
reperfusion, SOM clustering [15] analysis was per-
formed. A 7 × 7 grid panel was selected for the SOM
output structure to intuitively interpret the results.
Transcripts showing similar expression patterns across
three conditions were gathered in a module. Selecting
rules were applied to 49 modules to obtain modules of
interest. Selected modules with similar expression pat-
terns across three groups were combined as a ‘cluster.’

Fig. 1 Overall experimental design and workflow. a Kidney cortex tissues were obtained from five male patients with kidney cell carcinoma or
transitional cell carcinoma scheduled for total nephrectomy. The base-line expression was analyzed under normal condition or pre-ischemia. Gun
biopsy was performed for ischemia after 15 min of ischemia and 10min later, the biopsy was repeated for reperfusion. b Bioinformatic workflow:
FastQC for quality assessment and Salmon were executed for RNA-seq quantification from pre-ischemia, ischemia, and reperfusion conditions.
Differential expression analysis and self-organizing map (SOM) followed by pathway analysis were performed in parallel to identify key genes and
pathways significantly associated with ischemia-reperfusion
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SOM algorithm implemented in MATLAB 2018b soft-
ware (http://www.mathworks.com) was used. Genes in
each cluster were further analyzed to identify signifi-
cantly enriched canonical pathways.

Pathway analysis
The Ingenuity Pathway Analysis (IPA) software (www.
qiagen.com/ingenuity, Spring 2019, QIAGEN, CA, USA)
was used to identify enriched biological pathways. A
p-value or Benjamini-Hochberg adjusted p-value was
calculated using Fisher’s exact test, and a cut-off
value of less than 0.05 was used to identify signifi-
cantly enriched canonical pathways based on the In-
genuity Knowledge Base.

Results
Study workflow
We aimed to identify the key genes and pathways
through the evaluation of gene expression changes
under pre-ischemia (normal), ischemia, and reperfu-
sion conditions in human kidney samples using
RNA-seq (Fig. 1b). RNA-seq was performed for
downstream bioinformatic analyses, namely, differen-
tial gene expression and SOM clustering analyses.
Differential expression analysis was performed to
identify the significant DEGs between two condi-
tions. SOM clustering was carried out to group the
whole gene expression data and identify specific pat-
terns of interest across all three groups without prior
knowledge. Finally, the selected genes of interest
from both analyses were used as inputs for pathway
analysis and to identify the most significantly af-
fected biological pathways separately under ischemia
and reperfusion during IRI.

Differential expression analysis
Differential expression analysis is a conventional
method for the identification of quantitative changes
in the expression levels of genes between two groups.
We evaluated the DEGs by performing three compari-
sons as follows: (1) ischemia versus pre-ischemia to
identify the genes affected by ischemia; (2) ischemia
versus reperfusion to detect the genes affected by re-
perfusion after ischemia; (3) reperfusion versus pre-
ischemia to analyze the genes affected by the
complete IRI process. We used |log2 fold-change| ≥ 1
and p-value < 0.05 as criteria to identify significant
DEGs between the groups (Fig. 2).
As a result, 603 DEGs (upregulated: 402 genes; down-

regulated: 201 genes) were significantly dysregulated
between ischemia and pre-ischemia samples and 135
DEGs (upregulated: 67 genes; downregulated: 68 genes)
were found to be significantly dysregulated between re-
perfusion and ischemia samples. However, 1389 DEGs

(upregulated: 1119 genes; downregulated: 270 genes)
were dysregulated between reperfusion and pre-ischemia
conditions. The top 20 DEGs in each comparison group
are shown in Supplementary Tables S3-S5.
To determine the pathways associated with ischemia

and reperfusion, the IPA was performed to investigate
the biological pathways associated with the DEG sets.
The top pathways related to the DEGs between ischemia
versus pre-ischemia conditions were mainly metabolic
pathways and included genes encoding cytochrome P450
enzymes (CYP1A2, CYP2C8, CYP2C9, CYP2J2, CYP3A4,
CYP3A7). Uridine diphosphate glucuronosyltransferase
(UGT1A1, UGT1A6, UGT1A7, UCT2A3, UGT2B11,
UGT3A1) is involved in the metabolism of various mole-
cules, including steroids, hormones, and drugs (Fig. 3a
and Supplementary Table 6) [20, 21]. Ischemia induced
changes in metabolites such as nicotine, melatonin, sero-
tonin, and thyroid hormone. Melatonin and serotonin
are known to exert antioxidant proprieties under oxida-
tive stress [22], and may protect the function of the kid-
ney during early ischemic injury. In addition, drug
metabolism pathways, including bupropion, acetone deg-
radation and estrogen biosynthesis, and pregnane X re-
ceptor/retinoic X receptor (PXR/RXR) pathway were
related to ischemic process. PXR is a nuclear receptor
activated by endogenous compounds and clinical drugs.
Activated PXR in conjunction with RXR plays a central
role in drug metabolism by inducing the expression of
the cytochrome P450 family. This receptor was recently
reported to be involved in inflammation, proliferation,
and apoptosis [23].
The DEGs between reperfusion and ischemia condi-

tions were found to be enriched in cellular assembly,
development and migration, energy production, and
inflammasome-related signaling pathways (Fig. 3b and
Supplementary Table 7). Fibroblast growth factor
(FGF) performs diverse functions through the activa-
tion of several pathways by binding to FGF receptor
(FGFR). FGF signaling pathway is involved in cellular
assembly and development and migration, including
hypertrophy, regulation of epithelial-mesenchymal
transition, and actin cytoskeleton signaling, which are
affected in response to renal ischemia/reperfusion [24,
25]. AMP-activated protein kinase (AMPK) involved
in metabolic processes generating ATP and liver X
receptor (LXR)/RXR signaling associated with lipid
metabolism were also detected. In addition, inflamma-
some pathway was enriched, indicating that reperfu-
sion may induce an immune response.
The comparison between reperfusion and pre-

ischemia (reperfusion versus pre-ischemia) conditions
showed that reperfusion induced changes in various
pathways related to lipid and drug metabolism such
as nicotine, serotonin, and melatonin degradation, FXR/
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Fig. 2 Differential expression analysis. We evaluated the differentially expressed genes (DEGs) for three groups: ischemia versus pre-ischemia,
reperfusion versus ischemia, and reperfusion versus pre-ischemia. We used |log2 fold-change|≥ 1 and p-value < 0.05 as criteria to identify
significant DEGs between the groups. The volcano plots show all the DEGs for each comparison group (a). The heatmaps display the expression
patterns of significant DEGs (b)
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RXR, and PXR/RXR signaling pathway, consistent with
the results between ischemia and pre-ischemia conditions
(Fig. 3c and Supplementary Table 8). Different pathways
are involved in tryptophan, valine, ethanol, and hista-
mine degradation as well as fatty acid oxidation.
These results suggest that reperfusion affected not
only lipid and drug metabolism but also energy me-
tabolism. In summary, the pathway analysis for DEG
sets showed that metabolic pathways were affected
under both ischemia and reperfusion conditions. In
particular, reperfusion affected hypertrophy, cellular
assembly and development, and inflammatory
response-related signaling pathways.

SOM clustering analysis
Among the clustering algorithms such as hierarchical
clustering or k-means clustering, SOM has been ex-
tensively used for the analysis of large-scale gene ex-
pression data [26–31]. We performed SOM
clustering analysis to examine gene expression pat-
terns across all three conditions. Transcripts per mil-
lion (TPM) is a commonly used normalization
method as previously described in [32]. The log2-
transformed TPM values of transcripts for each
group were used as SOM input data. Given the small
sample size, we calculated median values of log2-

transformed TPM for each group. However, as tech-
nical and biological biases often generate inexplicable
results, we removed zero expression values and fil-
tered the very low signal values (< log23) for further
analyses. As a result, 38,014 transcripts were used
for SOM input. The 7 × 7 grid structure was chosen
for SOM output to enhance biological interpretabil-
ity. The results were visualized as a colored grid
panel with blue hexagons and a yellow-black similar-
ity color scheme between the hexagons (Fig. 4a). We
defined hexagon as a ‘module’ such that the genes
included in each module showed a similar expression
pattern across all three conditions. The similarity be-
tween adjacent modules was represented with differ-
ent colors; a color close to yellow was indicative of
the similar expression pattern between adjacent
modules. On the contrary, a color close to black was
suggestive of the distinct patterns of the adjacent
modules. The total number of transcripts in each
module after clustering is shown in Fig. 4b.
As we aimed to determine the change in the ex-

pression pattern of genes under each condition, we
focused on the specific patterns of gene expression
under ischemia (genes upregulated or downregulated
in ischemia versus pre-ischemia) and reperfusion
(genes upregulated or downregulated in reperfusion

Fig. 3 Enriched pathways associated with DEGs. We analyzed the enriched pathways of DEGs for three groups using Ingenuity Pathway Analysis:
ischemia versus pre-ischemia (a), reperfusion versus ischemia (b), and reperfusion versus pre-ischemia (c). The top 10 most significantly enriched
pathways are presented
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versus ischemia). Modules of interest among 49 mod-
ules were selected based on the criteria rules
(Table 1). As a result, module 42, 44, 45, 46, 48, and
49 including the genes upregulated in ischemia were
defined as ‘Cluster 1.’ Module 1, 8, 11, 17, and 19
carrying the genes downregulated during ischemia
were defined as ‘Cluster 2.’ Similarly, the genes in
modules 36 and 43 upregulated by reperfusion as
compared to ischemia and pre-ischemia were defined
as ‘Cluster 3.’ Lastly, the genes in module 15, 16, and
23 that were downregulated in reperfusion were de-
fined as ‘Cluster 4’ (Fig. 5). In total, 3035 and 1917
genes were affected in ischemia and reperfusion, re-
spectively (Table 2).
We performed pathway analysis using IPA for the

selected clusters to identify significantly enriched
pathways. The genes dysregulated by ischemia (Clus-
ter 1 and 2) were mainly enriched in apoptosis-
related pathways, including aryl hydrocarbon receptor
and death receptor signaling pathway (Table 3). Dur-
ing ischemia, FAS cell surface death receptor (FAS)
and tumor necrosis factor (TNF) related to complex
signaling pathways for cell death were down-

regulated, suggestive of the presence of a protective
mechanism against cell death. In addition, intracellu-
lar and secondary messenger signaling pathways such
as protein ubiquitination, adipogenesis, and apelin
adipocyte signaling pathway were identified. Lipid ac-
cumulation and deposition is known to induce lipo-
toxicity, thereby leading to ischemia-mediated kidney
injury [27]. Further, metabolism-related pathways such
as PXR/RXR signaling pathway and xenobiotic metab-
olism signaling were enriched. PXR/RXR signaling
pathway was also detected in DEG analysis.
The genes dysregulated by reperfusion (Cluster 3

and 4) were mainly related to cellular functions of
growth, proliferation, and migration (semaphorin sig-
naling, mTOR signaling, E74-like factor 2 [elF2] sig-
naling, integrin signaling, apelin muscle signaling, and
actin-based motility by Rho-related signaling)
(Table 4). Semaphorins, a family of growth cone guid-
ance molecules during neurodevelopment, interact
with the members of the Rho family [33]. In particu-
lar, semaphorins can be synthesized in podocytes and
tubular epithelial cells within the kidney and are im-
plicated in cell migration, growth, and immune

Table 1 Condition-specific criteria for selecting modules of interest among 49 modules

Condition Expression pattern Criteria

Ischemia effect Upregulated f½ log2ðI=PÞ�gmodulei
≥1 AND f½ log2ðR=PÞ�gmodulei

≥1

Downregulated f½ log2ðI=PÞ�gmodulei
≤1 AND f½ log2ðR=PÞ�gmodulei

≤1

Reperfusion effect Upregulated f½ log2ðR=IÞ�gmodulei ≥1 AND f½ log2ðR=PÞ�gmodulei ≥1

Downregulated f½ log2ðR=IÞ�gmodulei
≤1 AND f½ log2ðR=PÞ�gmodulei

≤1

P;I; R : the mean value of TPM for the genes in pre-ischemia, ischemia, and reperfusion groups in a module, respectively, i = 1..49

Fig. 4 SOM analysis results. a The 7 × 7 grid structure was chosen for SOM output to enhance interpretability. The results of SOM were visualized
as a colored grid panel with blue hexagons and similarity color between the hexagons. We defined the hexagon as a ‘module,’ and all genes
included in each module showed a similar expression pattern. The similarity between adjacent modules was represented with a yellow-black
color scheme; a color close to yellow indicated the similar expression pattern between adjacent modules, while a color close to black indicated
the distinct patterns between adjacent modules. b Each module contained transcripts with similar expression patterns across pre-ischemia,
ischemia, and reperfusion conditions. The total number of transcripts in each module is shown
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response in AKI [34, 35]. Integrin and actin signaling
pathways linked to Rho signaling related to cytoskel-
etal remodeling process during cell growth and
wound healing were enriched in the reperfusion effect
clusters. In addition, immune response-related path-
ways such as antigen presentation pathway and
sphingosine-1-phosphate signaling as well as intracel-
lular and second messenger pathways were enriched.

Discussion
Although IRI is a critical factor to induce severe AKI
and ESKD, the underlying biological mechanism is not
well-established owing to the complexity of this patho-
physiological process. Most previous studies have re-
ported the molecular mechanism of IRI as a single
process without separately evaluating the consequences
of ischemia and reperfusion. Therefore, here we evalu-
ated the biological signatures related to each event dur-
ing IRI at the transcriptomic level in human kidney
samples using RNA-seq.

We performed differential expression analysis and ap-
plied machine learning to identify the key genes and
pathways affected during IRI. We compared pre-
ischemia and ischemia (ischemia versus pre-ischemia),
ischemia and reperfusion (reperfusion versus ischemia),
and pre-ischemia and reperfusion (reperfusion versus
pre-ischemia) conditions. While the conventional differ-
ential expression analysis process only compared two
conditions, we applied unbiased clustering algorithm,
SOM, to identify specific trajectories of interest across
all three conditions. In particular, we focused on specific
gene expression patterns to identify the effects of ische-
mic and reperfusion separately during IRI. (1) The genes
dysregulated in ischemia versus pre-ischemia; (2) those
dysregulated in reperfusion versus ischemia. We then
performed pathway analysis to investigate the affected
pathways in ischemia and reperfusion during IRI process
using selected genes from differential expression analysis
and SOM clustering.
Pathway analysis for DEGs in each comparison group

revealed the enrichment of metabolism-related pathways

Fig. 5 Expression patterns of selected clusters. Genes in Cluster 1 and 2 were upregulated or downregulated in ischemia and reperfusion as
compared with those in pre-ischemia condition. Genes in Cluster 3 and 4 were upregulated or downregulated after reperfusion as compared
with those in pre-ischemia and ischemia. The vertical axis was represented as the relative mean of the cluster for the conditions

Table 2 Condition-specific cluster information

Clusters Module number Number of genes Total number of genes

Ischemia effect Cluster 1 (Upregulated) 42, 44, 45, 46, 48, 49 633 3035

Cluster 2 (Downregulated) 1, 8, 11, 17, 19 2402

Reperfusion effect Cluster 3 (Upregulated) 36, 43 227 1917

Cluster 4 (Downregulated) 15, 16, 23 1690
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in ischemia. On the other hand, cellular assembly, devel-
opment and migration, and immune response-related
pathways were enriched in reperfusion. Pathway analysis
for the genes selected from SOM revealed apoptosis,
xenobiotic metabolism, and fibrosis-related pathways to
be enriched in ischemia and cell growth and migration
and immune response-related pathways to be signifi-
cantly enriched in reperfusion.
In general, the interruption of the blood supply

during ischemia induces changes in specific meta-
bolic pathways. We found that melatonin/serotonin
degradation and FXR/RXR pathway related to lipid
metabolism as well as bupropion and acetone deg-
radation, estrogen biosynthesis, and PXR/RXR path-
way related to drug metabolism were enriched in
ischemia. Melatonin and its metabolites have been
regarded as scavengers of free radicals or stimulators
of antioxidant enzymes, and play protective roles in
kidney ischemic injury [36]. Thus, certain metabo-
lites associated with early ischemic damage may be
used as pathogenic biomarkers. Therefore, further
investigations are warranted to understand the role

of these metabolites in ischemia. Further, we ob-
served that the pathways related to apoptosis, fibro-
sis, and adipogenesis were significantly enriched by
ischemia; pro-apoptotic genes such as FAS, CAS2/6/
7, PARP6/8/11/12/14, TNF, and TNFRSF1/10/10B/
25, fibrosis-related genes, collagen (COL1/3/ 4/5/6/7/
12//15/16/18), and adipogenesis-related genes were
downregulated, suggesting the existence of a protect-
ive process from cell damage against ischemia injury
in the kidney tissue.
Reperfusion after ischemia triggers a robust inflamma-

tory response within the kidney by blood re-supply. The
immune response-related pathways, including inflamma-
some and antigen presentation pathway, were dysregu-
lated after reperfusion in our study, and this effect was
not observed during ischemia. Considering the other
mechanisms of reperfusion, cell development, growth
and migration-related pathways such as FGF, mamma-
lian target of rapamycin (mTOR), eukaryotic initiation
factor 2 (eIF2), semaphorin, integrin, and actin-based
motility by Rho signaling were identified. AKT1/2/3,
KRAS, MAPKAP1, EIF2B1/4, CDK11A, RPL8/12/13A/

Table 3 Top 10 most significantly enriched pathways in Cluster 1 and 2 using IPAa

Ingenuity canonical pathway BHb p-value Genes

Adipogenesis pathway 0.0022 BMP4, BMPR1A, CLOCK, CTBP2, CTNNB1, EGR2, ERCC3,FGF1,FGFR2,FOXC2,FZD2,GTF2H1,GTF2H2,HAT1,
HDAC1,HDAC4,HDAC6,HDAC7,HIF1A,KLF5,NFATC4,NR1D2,NR2F2,PPIP5K1,SAP30,SETDB1,SIRT1,SREBF1,
TBL1XR1,TGFB1,TNF,TNFRSF1A,TP53,TXNIP,XBP1

Aryl hydrocarbon receptor
signaling

0.0044 ALDH1A3,ALDH1L1,ALDH3A2,ALDH4A1,ALDH6A1,ALDH7A1,CDKN1A,FAS,GSTA1,GSTA2,GSTK1,GSTP1,
HSPB2,HSPB7,IL6,MAPK3,MAPK8,MCM7,MDM2,MGST1,MGST3,NCOA7,NCOR2,NFIX,NQO2,NR2F1,RARB,
RBL2,SMARCA4,TFF1,TGFB1,TGFB2,TNF,TP53

PXR/RXR activation 0.0044 ABCC2,ABCC3,AKT2,ALDH3A2,CES2,CES3,CYP3A5,CYP3A7,G6PC,GSTA1,GSTA2,HNF4A,IL6,NCOA1,NR1I3,
PCK2,PRKACB,TNF,UGT1A1,UGT1A7

Protein ubiquitination pathway 0.0044 ANAPC2,ANAPC4,ANAPC5,BIRC2,BIRC6,CRYAA/CRYAA2,CRYAB,DNAJC10,DNAJC12,DNAJC22,DNAJC30,
DNAJC7,HLA-A,HLA-B,HLA-C,HLA-E,HSPA2,HSPA4,HSPB2,HSPB7,HSPD1,MDM2,PSMA1,PSMA3,PSMB3,
PSMB8,PSMC3,PSMD2,PSME2,SKP1,SKP2,SMURF2,TAP1,UBB,UBE2A,UBE2E1,UBE2E3,UBE2F,UBE2J2,UBE2Q2,
UBR2,UCHL1,USP15,USP19,USP2,USP21,USP24,USP28,USP33,USP36,USP4,USP48,USP53,USP54,USP8

Xenobiotic metabolism signaling 0.0044 ABCC2,ABCC3,ALDH1A3,ALDH1L1,ALDH3A2,ALDH4A1,ALDH6A1,ALDH7A1,ANKRA2,CAMK1G,CAT,CES1,
CES2,CES3,CHST1,CHST15,CITED2,CYP3A5,CYP3A7,DNAJC7,EIF2AK3,FMO1,FMO5,GSTA1,GSTA2,GSTK1,
GSTP1,HDAC4,HS3ST6,IL6,MAF,MAOA,MAPK14,MAPK3,MAPK8,MAPK9,MGST1,MGST3,NCOA1,NCOR2,
NDST2,NQO2,NR1I3,PIK3R4,PPP2R2B,PRKCB,PRKD3,PTPA,RAF1,SULT1C2,SULT2B1,TNF,UGT1A1,UGT1A6,
UGT1A7,UGT2B7,UGT8,UST

Apelin adipocyte signaling
pathway

0.0044 ADCY3,ADCY5,ADCY6,ADCY7,CAT,CYBB,GNAI2,GPX3,GPX8,GSTA1,GSTK1,GSTP1,HIF1A,MAPK14,MAPK15,
MAPK3,MAPK8,MAPK9,MGST1,MGST3,NOX4,PRKAB1,PRKACB

Death receptor signaling 0.0085 ACTB,BIRC2,CASP2,CASP6,CASP7,FAS,HSPB2,HSPB7,IKBKG,LIMK1,MAPK8,PARP11,PARP12,PARP14,PARP6,
PARP8,RIPK1,SPTAN1,TANK,TNF,TNFRSF10B,TNFRSF1A,TNFRSF25,TNFSF10

LPS/IL-1-mediated inhibition of
RXR function

0.0135 ABCC2,ABCC3,ABCG1,ACOX2,ACSL4,ALDH1A3,ALDH1L1,ALDH3A2,ALDH4A1,ALDH6A1,ALDH7A1,APOE,
CAT,CES2,CHST1,CHST15,CPT1B,CYP3A5,CYP3A7,CYP4A11,FABP1,FMO1,FMO5,GSTA1,GSTA2,GSTK1,
GSTP1,HMGCS1,HS3ST6,IL1RL1,MAOA,MAPK8,MAPK9,MGST1,MGST3,NCOA1,NDST2,NR1I3,SLC27A2,
SREBF1,SULT1C2,SULT2B1,TNF,TNFRSF1A,UST

Hepatic fibrosis/hepatic stellate
cell activation

0.0135 AGTR1,CCL5,COL12A1,COL15A1,COL16A1,COL18A1,COL1A2,COL3A1,COL4A3,COL4A5,COL5A2,COL5A3,
COL6A1,COL6A2,COL6A3,COL7A1,CSF1,ECE1,EDNRB,FAS,FGF1,FGFR2,FN1,IGF2,IL1RL1,IL6,IL6R,KLF6,LEPR,
MYL6B,PDGFA,PDGFRB,SMAD4,TGFA,TGFB1,TGFB2,TIMP1,TNF,TNFRSF1A

TR/RXR activation 0.0135 ACACA,AKR1C1/AKR1C2,AKT2,BCL3,COL6A3,DIO1,G6PC,GPS2,HIF1A,LDLR,MDM2,NCOA1,NCOR2,PCK1,
PIK3R4,SLC16A2,SLC16A3,SREBF1,SREBF2,TBL1XR1,THRA,UCP2

aIPA, ingenuity pathway analysis; bBH, Benjamini-Hochberg; LPS, lipopolysaccharide; IL-1, interleukin-1; PXR, pregnane X receptor; RXR, retinoic X receptor; TR,
thyroid hormone receptor
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17/24/30/31, ARPC2/3/5/5 L, RAC1, and RHOC/T2/V,
crucial for regeneration and repair system after reperfu-
sion injury were downregulated. Thus, it indicates that a
dysregulation in cell growth and migration pathways in
response to reperfusion occurs.
Semaphorin 4D (SEMA4D) and plexin B1

(PLXNB1), a receptor of semaphorin related to
semaphorin signaling, were found to be downregu-
lated under reperfusion condition. Semaphorin 3A
(Sema3A) promotes kidney injury followed by AKI
[37]; however, the role of Sema4D is not well stud-
ied. Previous preclinical and clinical studies have
shown that Sema3A is detectable in urine, suggest-
ive of its potential role as a biomarker of AKI [38–
40]. In comparison with Sema3A, Sema4D is a
transmembrane protein and an insoluble factor.
Thus, further investigations are needed to evaluate
the role of Sema4D and plexin B1 as potential bio-
markers of IRI.

Conclusion
We reveal that specific biological pathways were
uniquely involved in ischemia and reperfusion dur-
ing IRI. Metabolism, apoptosis, and fibrosis-related
pathways were significantly dysregulated under is-
chemia conditions, whereas cell development,
growth, migration, and immune response-related
pathways were affected by reperfusion following is-
chemia. Therefore, we suggest that a condition-
specific therapeutic strategy may be necessary to

prevent severe kidney damage after IRI in the clin-
ical setting. Although our study has limitations such
as the small number of samples and relatively short
duration of ischemia and reperfusion, we believe
that it will contribute to the understanding of the
mechanisms underlying IRI.
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Table 4 Top 10 most significantly enriched pathways in Cluster 3 and 4 using IPAa

Ingenuity canonical pathway BHb p-value Genes

Semaphorin signaling in neurons 0.0003 CFL1,FYN,LIMK2,MET,PAK4,PLXNB1,PTK2,RAC1,RHOBTB1,RHOC,RHOT2,RHOV,RND1,RND3,ROCK1,
ROCK2,SEMA4D

mTOR signaling 0.0003 AKT1,AKT2,AKT3,EIF3B,EIF3D,EIF3E,EIF3F,EIF3H,EIF3J,EIF4A2,FKBP1A,IRS1,KRAS,MAPKAP1,PGF,PLD2,PPP2R2B,
PPP2R5C,PRKAG1,PRR5,RAC1,RHOBTB1,RHOC,RHOT2,RHOV,RND1,RND3,RPS10,RPS13,RPS18,RPS2,RPS20,
RPS24,RPS5,RPS6KA3,RPS8,RPSA

eIF2 signaling 0.0003 ACTB,AKT1,AKT2,AKT3,CDK11A,EIF2B1,EIF2B4,EIF3B,EIF3D,EIF3E,EIF3F,EIF3H,EIF3J,EIF4A2,HNRNPA1,KRAS,
MYCN,PPP1CA,RPL12,RPL13A,RPL17,RPL24,RPL30,RPL31,RPL35A,RPL7,RPL8,RPS10,RPS13,RPS18,RPS2,
RPS20,RPS24,RPS5,RPS8,RPSA,SREBF1,TRIB3

Superpathway of cholesterol
biosynthesis

0.0023 ACAT1,HADHB,HMGCR,HSD17B7,LBR,MVD,MVK,SC5D,SQLE,TM7SF2

Integrin signaling 0.0023 ACTB,AKT1,AKT2,AKT3,ARF1,ARF4,ARPC2,ARPC3,ARPC5,ARPC5L,BCAR1,BCAR3,CAPN1,CAPN10,FYN,GRB7,
ILK,KRAS,NEDD9,PAK4,PTK2,RAC1,RHOBTB1,RHOC,RHOT2,RHOV,RND1,RND3,ROCK1,TLN1,TNK2,TSPAN1,
TSPAN4,ZYX

Ephrin receptor signaling 0.0023 ACP1,AKT1,AKT2,AKT3,ARHGEF15,ARPC2,ARPC3,ARPC5,ARPC5L,BCAR1,CFL1,CREBBP,EFNA1,FGF1,FYN,
GNAS,GRINA,KRAS,LIMK2,PAK4,PDGFA,PGF,PTK2,PTPN13,RAC1,ROCK1,ROCK2,SDC2,SH2D3C,STAT3

Apelin muscle signaling pathway 0.0023 AKT1,AKT2,AKT3,APLNR,GNAS,NOS3,NRF1,PRKAG1

Antigen presentation pathway 0.0055 CALR,CD74,HLA-A,HLA-DMB,HLA-DOA,HLA-DQB2,HLA-F,MR1,NLRC5,TAP1,TAPBP

Shingosine-1-phosphate signaling 0.0071 ADCY3,ADCY4,AKT1,AKT2,AKT3,ASAH2B,CASP9,PDGFA,PDGFRB,PLCB1,PLCB4,PLCD1,PTK2,RAC1,RHOBTB1,
RHOC,RHOT2,RHOV,RND1,RND3,S1PR1

Regulation of actin-based
motility by Rho

0.0072 ACTB,ARHGDIA,ARPC2,ARPC3,ARPC5,ARPC5L,CFL1,PAK4,PIP5K1A,PIP5K1B,RAC1,RHOBTB1,RHOC,RHOT2,
RHOV,RND1,RND3,ROCK1

aIPA: ingenuity pathway analysis; bBH, Benjamini-Hochberg; mTOR, mammalian target of rapamycin; Eif2, eukaryotic initiation factor 2
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