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Abstract

Background: Autosomal dominant polycystic kidney disease (ADPKD), the predominant type of inherited kidney
disorder, occurs due to PKD1 and PKD2 gene mutations. ADPKD diagnosis is made primarily by kidney imaging.
However, molecular genetic analysis is required to confirm the diagnosis. It is critical to perform a molecular
genetic analysis when the imaging diagnosis is uncertain, particularly in simplex cases (i.e. a single occurrence in a
family), in people with remarkably mild symptoms, or in individuals with atypical presentations. The main aim of
this study is to determine the frequency of PKD1 gene mutations in Iranian patients with ADPKD diagnosis.

Methods: Genomic DNA was extracted from blood samples from 22 ADPKD patients, who were referred to the
Qaem Hospital in Mashhad, Iran. By using appropriate primers, 16 end exons of PKD1 gene that are regional
hotspots, were replicated with PCR. Then, PCR products were subjected to DNA directional Sanger sequencing.

Results: The DNA sequencing in the patients has shown that exons 35, 36 and 37 were non- polymorphic, and
that most mutations had occurred in exons 44 and 45. In two patients, an exon-intron boundary mutation had
occurred in intron 44. Most of the variants were missense and synonymous types.

Conclusion: In the present study, we have shown the occurrence of nine novel missense or synonymous variants
in PKD1 gene. These data could contribute to an improved diagnostic and genetic counseling in clinical settings.
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Background
One of the most prevalent inherited kidney disorders
that affects both kidneys is autosomal dominant polycys-
tic kidney disease (ADPKD), which leads to a progressive
loss of kidney function and kidney failure [1]. About one
to two infants in 1000 live at birth, and approximately
10% of people who undergo dialysis are affected by this

disease [2, 3]. ADPKD occurs in two types including
type I and type II, caused by PKD1 and PKD2 mutations,
respectively [4, 5].
PKD2 mutation causes end-stage renal disease at an

average age of 74 years, which occurs in 10–15% of
cases; on the other hand, PKD1 mutation results in end-
stage renal disease at an average age of 54 years which
occurs in 80–90% of total cases of ADPKD. The latter is
the more severe form of the disease [1, 3, 5]. Patients
having end-stage kidney disease should receive renal re-
placement therapy (RRT) or dialysis to stay alive. How-
ever, dialysis has some limitations, including lack of
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vascular access, risks of vascular thrombosis, infections,
diminished quality of life, and loss of the kidney biosyn-
thetic functions [6]. Patients who were diagnosed with
ADPKD before age of 30 and patients who have hyperten-
sion or hematuria before age of 35, have a worse renal
outcome [7]. ADPKD diagnosis is typically carried out by
kidney ultrasound imaging, computed tomography scan
or magnetic resonance imaging; however, considering the
similarity of ADPKD to other cystic kidney disorders, con-
ventional imaging methods do not often lead to a definite
diagnosis [1, 2]. Additionaly, molecular methods have an
important role to confirm ADPKD diagnosis, especially in
young kidney donors, patients with negative family his-
tory, individuals who present ADPKD with unusual symp-
toms in childhood and patients who have relatives
suffering from this disorder [8, 9].
ADPKD is the most frequent genetic kidney disorder

(frequency of about 0.1%), which results in 5–8% of end-
stage renal diseases (ESRDs). ESRD is a progressive, dis-
ease with enlarged polycystic kidneys typically occuring
in the late middle age [5]. Polycystin-1, is a large multi-
domain protein encoded by PKD1 gene. It has domains
and regions that are homologous with a number of dif-
ferent proteins [10]. Polycystin- 1 has been proposed to
act as a G protein–coupled receptor [11]. Instead,
polycystin-2 (the protein coded by PKD2) is homologous
to an ion-channel subunit [12, 13]. Most cases of ADPK
D leading to ESRD are caused by PKD1 mutations [14].
Nevertheless, the genetic determination of the locus mu-
tation has advanced slowly, due to the fact that PKD1
contains a 12,906-bp coding sequence divided into 46
exons and that the 5′ region of the gene, from upstream
of exon 1 to exon 33, is inserted in a complex genomic
area and repeated more than 4 times on the same
chromosome [15]. The polycystic kidney disease 1 gene
encodes a 14 kb transcript and lies within a duplicated
region on chromosome 16. Homologous sequences
searches in a number of databases have found one par-
tial cDNA and two genomic sequences with significant
homology to both polycystin-1 and -2 [16].
The PKD1-like homologous gene (HG) has revealed a

number of specific deletions and a low level of substitu-
tions (about 2%) in comparison with PKD1 [17]. The
HG locus analysis of PKD1 has been highly difficult.
Thus, the quantity of identified PKD1 mutations is still
incomplete, with 82 modifications described in the On-
line Human Gene Mutation Database (HGMD) [18]. A
multiple number of methods have been used to screen
the repeated region [19–23], however, the 3′ area has re-
ceived insufficient attention, with 57.3% of all mutations
found in the single-copy area covering 20% of the coding
region. PKD2 (a less-complex gene) has revealed 41 mu-
tations with potential effects of truncating and possibly
inactivating the translated protein [24]. A discrete

number of missense changes have also been described
[19, 23–26]. Since numerous somatic mutations and a
significant rate of formation of novel germline mutations
are needed to explain cystogenesis [19], it has been pro-
posed that infrequent mechanisms promote a high rate
of PKD1 mutations. A long polypyrimidine region in
IVS21, which could theoretically form triplex DNA
structures [27, 28], has been considered as a possible
cause of mutations in downstream exonsequences [22].
These multiple substitutions and other modifications
were described to match HG sequences, possibly indicat-
ing a gene conversion with the remotely located HG loci
[21, 29]. PKD1 gene (OMIM 601313) is located in the
16p13.3 chromosome region and consists of 46 exons.
Exons 1–33 of PKD1 replicates around 6 times in HG,
which has challenged PKD1 genetic analysis. Until Janu-
ary 2015, approximately 2322 PKD1 sequence variants
and 278 PKD2 sequence variants were reported in
ADPKD mutation databases, as well as 1177 and 211 hu-
man mutations in PKD1 and PKD2 sequences, respect-
ively [16, 17]. Although mutation data for PKD genes of
different populations are available, there are few reports
for PKD mutations in the Iranian population. The main
goal of this study was to establish the frequency of mu-
tations in the PKD1 gene obtained by PCR (Polymerase
Chain Reaction) and DNA Sanger sequencing [30] in the
Iranian patients with ADPKD diagnosis.

Methods
Patient selection
Twenty-two ADPKD patients were obtained from the
Ghaem Hospital; (Mashhad, Iran) between April 2012 to
March 2013. They were included after diagnosis and dis-
ease characteristics as ADPKD. The study was approved
by ethics committee of Mashhad University of Medical
Sciences. Before the blood sample were collected, all pa-
tients provided their informed consents.
We excluded patients later clinically diagnosed by Von

Hippel-Lindau disease and Tuberous Sclerosis. In
addition, patients without symptoms of polycystic kidney
disease or those who had other syndromes were also ex-
cluded in this study.

Amplification assay
Genomic DNA was extracted from 22 whole-blood sam-
ples using the standard salting-out method and it was
quantified by NanoDrop 1000 (Thermo Fisher Scientific,
Waltham, MA, USA). Eight-specific primers within the
region of the exon 31–46 were designed with the Primer
3 software (Table 1). Sequences were checked for self-
or inter-molecular annealing with a nucleic-acid-folding
software (OligoAnalyzer 3.1). We performed local-
alignment analyses with the BLAST program to confirm
the specificity of the designed primers (http://www-ncbi-
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nlm-nih-gov.acces.bibl.ulaval.ca/tools/primer-blast). Bi-
directional sequence analysis was conducted for all PCR
amplicons.
Amplification was performed in a thermal cycler, Gen-

eAmp PCR System 9700 (Applied Biosystems, Massa-
chusetts, USA), including 150 ng of genomic DNA, 10X
PCR buffer, 2 mM MgCl2, 1 Unit Taq DNA polymerase
(Genet Bio, South Korea), 0.2 mM dNTP mix, and 5
pmol of each primer in a final volume of 20 μl. Cycling
parameters were as follows: an initial denaturation at
95 °C for 5 min, 35 cycles at 95 °C for 30 s, annealing for
30 s at 52 °C, 57 °C, 69 °C, 67 °C, 54 °C, 61 °C and 62 °C
for primer#1 to #8 respectively, and a final extension
step at 72 °C for 35 s, ended by a last extension at 72 °C
for 5 min.
PCR products were analyzed by electrophoresis in a

1.5% agarose gel stained with ethidium bromide followed
by Sanger sequencing reactions.

Sanger sequencing
Sequencing products were run on an ABI 3130XL Gen-
etic Analyzer (Macrogene Company South Korea), ac-
cording to the manufacturer’s guidelines. Data analysis
was performed with Chromas software version 2.6.5
(Technelysium, South Brisbane, Australia).

Results
Twenty-two patients with an average age of 36.6 ± 7.3
years, suffering from ADPKD were studied. The sequen-
cing results of the patientsare reported in Table 2 and
Fig. 1. In patient 45.1, variations in rs10960 polymorph-
ism in exon 44 led to the conversion of isoleucine to val-
ine (p.Ile4045Val). This type of variation, considered as
missense, was recorded in the PKDB database with a
minor allele frequency of 0.239. Moreover, the single nu-
cleotide variant (p.Ile4045Val), was also found in patient
410.2. In four patients, including 45.3, 410.1, 417.1, and
419.1, exon 45 had a synonymous mutation (p.Ala4092=
) and was reported as rs3087632 with MAF: 0.262 in the
database PKDB. Moreover, the missense mutation con-
verting glutamine to arginine (p.Gln4005Arg) had oc-
curred in exon 44 of the patient 421 and was recorded
as uncertain significance in the PKDB database.

Novel variants
The first variant was observed in patient 45.5. This vari-
ant caused a synonymous variant in exon 44
(p.Gly4068=). Patient 47.1, a variant of rs200796474 was
also synonymous, with a serine converted to serine
(p.Ser4013=). A leucine to stop codon mutation, was ob-
served in exon 44 of patient 48.1 (p.Leu4031X). In pa-
tient 411.2, a missense converting arginine to leucine
was observed in exon 45 and the missense mutation
converting arginine to leucine was also found in the
same exon of the same patient (CGT/CTT). The mis-
sense change converting valine to methionine occurred
in exon 44 of patient 418.2 (p.Val4035Met). In addition,
the missense variation converting threonine to alanine
was found in some part of the exon 45 in the patient
422 (p.Thr4073Ala)(Table 2).

In silico functional analysis
Nucleotide changes in the PKD1 gene was determined
based on reference genomic sequemces NC_000016.10.

Table 1 Coverage of the primers

Primers Exons and introns

PKD1ex31–34 Int30-exo31-int31-exo32-int32-exo33-int33-exo34-int34

PKD1ex35–37 Int 34-exo35-int35-exo36-int36-exo37-int37

PKD1ex38–39 Int37-exo38-int38-exo39-int39

PKD1ex40–41 Int39-exo40-int40-exo41-int41

PKD1ex41–43 Int40-exo41-int41-exo42-int42-exo43

PKD1ex44–45 Int43-exo44-int44-exo45-int45

PKD1ex45–46 Int44-exo45-int45-exo46-int46

Table 2 Mutations and polymorphisms of PKD1 identified in this study

Patient ID Region cDNA Change Amino Acid Change Type Clinical Significance

421 EX44 c.12014A > G p.Gln4005Arg Missense Uncertain Significance

48.1 Ex44 c.12092 T > A p.Leu4031X Stop codon Definitely Pathogenic

418.2 Ex44 c.12103G > A p.Val4035Met Missense Possibly Damaging

45.1 EX44 c.12133A > G p.Ile4045Val Missense Likely Neutral

410.2 EX44 c.12133A > G p.Ile4045Val Missense Likely Neutral

47.1 Ex44 c.12039C > T p.Ser4013= Synonymous Not Reported

45.3 EX45 c.12276A > G p.Ala4092= Synonymous Likely Neutral

417.1 EX45 c.12276A > G p.Ala4092= Synonymous Likely Neutral

419.1 EX45 c.12276A > G p.Ala4092= Synonymous Likely Neutral

410.1 EX45 c.12276A > G p.Ala4092= Synonymous Likely Neutral

422 EX45 12217A > G p.Thr4073Ala Missense Likely Neutral
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Fig. 1 DNA sequencing results of Iranian patients with ADPKD. Patients including a) patient# 421 (p.Gln4005Arg); b) patient# 48.1 (p.Leu4031X); c)
patient# 418.2 (p.Val4035Met); d) patient# 45.1 (p.Ile4045Val); e) patient# 410.2 (p.Ile4045Val); f) patient# 47.1 (p.Ser4013=); g) patient# 45.3
(p.Ala4092=); h) patient# 417.1 (p.Ala4092=); i) patient# 419.1(p.Ala4092=); j) patient# 410.1 (p.Ala4092=); k) patient# 422 (p.Thr4073Ala)
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The detected sequence variations reported in this study
were checked with the list of Autosomal Dominant Poly-
cystic Kidney Disease Mutation Database (PKDB) and
PKD gene variants in the Human Gene Mutation Data-
base (HGMD) [31].
The pathogenicity prediction of novel variations were

analyzed by Mutation Taster [32]. We checked related
protein products for sequence and length alteration by al-
tered CDS (NM_001009944) using expasy translate tools.
The prediction obtained of the potential effect of each
variant has been shown in Table 2. In the current study,
mutations were named based on CDS according to stand-
ard mutation nomenclature for molecular diagnostic aims.
The UniProt database, UniProtKB ID Q8IYM9 (http://

www.uniprot.org), the NCBI dbSNP database (https://
www.ncbi.nlm.nih.gov/SNP/), and 1000 Genomes
(http://www.1000genomes.org/) have been used to re-
trieve polymorphism data. Functional effects of SNPs
were predicted using Polyphen-2 (http://genetics.bwh.
harvard.edu/pp2).

Discussion
To date, 2322 pathogenic meuations for PKD1 and 278
for PKD2 have been reported in the PKDB [33] but their
relative frequencies are unknown. Moreover, Daoust
et al., identified a family in the French-Canadian popula-
tion in which a classical clinical presentation of ADPKD
resulted from a mutation at a locus genetically distinct
from all the previously described loci for this disease.
This suggests an existence of a third genetic locus for
ADPKD [5].
In the current study, 16 end exons of PKD1 gene were

studied. The sequencing results have shown that exons
35, 36 and 36 were non-polymorphic, with no mutations,
and the most mutations occurred in exons 44 and 45. In
most of the patients, variants were mostly missense and
same-sense types. Our results have shown that there is
no definite hot spot in PKD1 and thus, a complete PKD1
mutation analysis is needed for genetic diagnosis of
ADPKD in the Iranian patients. Our newly detected mu-
tations in the Iranian population have made the PKD
mutation database richer, a result of great importance in
the genetic consultation of ADPKD patients.
Regarding the large genes involved in ADPKD, screen-

ing all of their regions would be expensive and time-
consuming; hence, to overcome this issue a database
could be generated for mutations of polycystic kidney
disease among the Iranian population to determine the
most common mutations and to characterize mutation
hot spots in this population. Furthermore, considering
the clinical similarity of ADPKD with other kidney cystic
diseases, causing incorrect clinical diagnosis in the ab-
sence of familial history, molecular study for PKD1 with
or without PKD2 in suspected patients is recommended.

Identified pathogenic mutations in the present study
could be confirmed in future studies with more ADPKD
families. Besides, genotype-phenotype correlation studies
could be performed to determine the severity of each
variant and the outcome of patients associated with a
specific variant.

Conclusion
In the current study, we demonstrated nine novel mis-
sense or synonymous variants in PKD1. These data will
contribute to an improved diagnostic and genetic coun-
seling in clinical settings.
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