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Abstract

Background: End stage renal disease (ESRD) describes the most severe stage of chronic kidney disease (CKD),
when patients need dialysis or renal transplant. There is often a delay in recognizing, diagnosing, and treating the
various etiologies of CKD. The objective of the present study was to employ machine learning algorithms to
develop a prediction model for progression to ESRD based on a large-scale multidimensional database.

Methods: This study analyzed 10,000,000 medical insurance claims from 550,000 patient records using a
commercial health insurance database. Inclusion criteria were patients over the age of 18 diagnosed with CKD
Stages 1–4. We compiled 240 predictor candidates, divided into six feature groups: demographics, chronic
conditions, diagnosis and procedure features, medication features, medical costs, and episode counts. We used a
feature embedding method based on implementation of the Word2Vec algorithm to further capture temporal
information for the three main components of the data: diagnosis, procedures, and medications. For the analysis,
we used the gradient boosting tree algorithm (XGBoost implementation).

Results: The C-statistic for the model was 0.93 [(0.916–0.943) 95% confidence interval], with a sensitivity of 0.715
and specificity of 0.958. Positive Predictive Value (PPV) was 0.517, and Negative Predictive Value (NPV) was 0.981. For
the top 1 percentile of patients identified by our model, the PPV was 1.0. In addition, for the top 5 percentile of
patients identified by our model, the PPV was 0.71.
All the results above were tested on the test data only, and the threshold used to obtain these results was 0.1.
Notable features contributing to the model were chronic heart and ischemic heart disease as a comorbidity, patient
age, and number of hypertensive crisis events.

Conclusions: When a patient is approaching the threshold of ESRD risk, a warning message can be sent
electronically to the physician, who will initiate a referral for a nephrology consultation to ensure an investigation to
hasten the establishment of a diagnosis and initiate management and therapy when appropriate.
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Background
End stage renal disease (ESRD) describes the most se-
vere last stage (Stage 5) of chronic kidney disease (CKD),
when the kidneys are functioning at 10–15% or less of
their normal function [1]. In Stage 1, representing nor-
mal renal function, the glomerular filtration rate (GFR)
is over 90 ml/kg/min, and the condition is almost always
asymptomatic. Stage 2 is defined by GFR between 60
and 89ml/kg/mi, and although defined by laboratory
tests, most individuals are asymptomatic. Stage 3 de-
notes GFR between 30 and 59ml/kg/min, and is in most
cases associated with fatigue, fluid retention, and
changes in urination. Stage 4 is defined by GFR between
15 and 29ml/kg/min, and is characterized by swelling of
the extremities, nausea and vomiting, along with nerve
and cognitive malfunction. At Stage 5, the kidneys
cannot perform the fluid, electrolyte, and waste
exchange needed for homeostasis of the body, and with-
out kidney dialysis or renal transplant, this condition is
incompatible with life [2].
Because of the fact that even at Stage 4 persons may

be asymptomatic, there is often a delay in recognizing,
diagnosing, and treating the various etiologies of CKD.
As treatment alternatives exist to slow the progression
of renal disease, a precise prediction model is needed for
the identification of patients at increased risk for kidney
function deterioration [2].
The objective of the present study was to employ

machine learning algorithms in an attempt to develop a
prediction model for progression to ESRD in patients
with CKD, based on a large-scale multidimensional
database.

Methods
Data set
This study analyzed commercial claims of over 20,000,
000 patients from one of the largest United States-
based health insurance company from January 1, 2006
to December 31, 2018. The data were selected from
medical claims gathered and acquired from their bene-
ficiary’s claims. These data are stored and processed on
a regular basis, and it was not gathered specifically for
this project. The data were completely de-identified by
the insurance company, and all identifying details were
removed and were not exposed to the researchers. The
medical claims database contains data on medical in-
surance claims for reimbursement purposes, as well as
personal diagnoses according to the International
Classification of Diseases, Ninth Revision, Clinical
Modification (ICD-9-CM) and International Classifica-
tion of Diseases, Tenth Revision, Clinical Modification
(ICD-10-CM) diagnosis and procedure codes, and
details of pharmacy purchases.

Study population and definitions
This study analyzed 10,000,000 medical insurance claims
from 550,000 patient records using a commercial med-
ical claims database. Inclusion criteria were patients over
the age of 18 diagnosed with CKD stages 1–4. As the
main underlying etiologies for CKD are diabetes and
hypertension, patients whose underlying conditions were
acute glomerulopathies, congenital abnormalities, or
traumatic kidney injury were excluded, as the course of
disease in these conditions is different and may interfere
with interpretability of the results. The index date for
the case group was defined as the date of the first
diagnosis of ESRD by a physician (30 ICD-9-CM and
ICD-10-CM codes for ESRD, see Additional file 1) or a
dialysis procedure. For the control group, the index date
was the date of the last available entry in the database,
either a diagnosis or a pharmacy purchase. The observa-
tion window consisted of all data available 6 months
before the index date. Patients who had less than 6
months of claims records prior to index date were
excluded.

Prediction model construction and evaluation
Within the observation window of each patient, we used
age, sex, ICD-9-CM and ICD-10-CM diagnostic codes,
National Institutes of Health’s RxCUI (RxCUI) medica-
tion codes,( [3]- A) and the claims for clinical encoun-
ters and costs found in that period for features creation.
ICD-9-CM and ICD-10-CM codes were used either
directly as diagnostic information in some of the features
or by CCS mapping in other features in order to aggre-
gate codes according to medical reasoning. For medica-
tion coding, an NDC to RxCUI mapping was done
according to NIH conversion tables.
We manually compiled 240 predictor candidates in-

formed by the literature, divided by medical reasoning
into six feature groups: demographics, chronic condi-
tions, diagnosis and procedure features, medication fea-
tures, medical costs, and episode counts.
The index date was calculated individually for each pa-

tient as the ESRD diagnosis date for the ESRD positive
patients or the date of the last available data for the
control. We then left a 6 month prediction window prior
to the index date, and generated our features and predic-
tions from only data available prior to the window
period.
Chronic condition status was calculated from the

claims data using the Center for Medicare and Medicaid
Services’ Chronic Condition Data Warehouse (CCW)
algorithm standard ( [4]-B). Diagnosis, medications, and
procedures features were calculated as count and trend
features, and standardized to time of follow-up for the
individual patient.
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In addition to the manually calculated features, initially
inspired by the well-known Word2vec algorithm [5, 6]
(a natural language processing method which assigns for
each word in a sentence a vector representation), we cre-
ated an embedding representation (i.e. we converted
medical codes into vector representations) for each med-
ical code. The idea was to treat a patient’s set of medical
codes as if it were a sentence consisting of words.
As claims data do not include direct information on

chronic conditions, chronic conditions status was calcu-
lated from the claims data. We used the Center for
Medicare and Medicaid Services’ Chronic Condition
Data Warehouse (CCW) algorithm standard, in which
patients are assigned a categorical score of 0 or 1 for
each chronic condition according to the prevalence of 1
or more ICD 9 or ICD10 code from a closed medically
verified list, within a given timeframe [4, 7]. CCW status
was calculated in 3 time frames for each condition - im-
mediate status (3 months before index date), recent (1
year before index date) or ever (any time within the trial
window) (Fig. 1).
Next, code embeddings were summed into patient-

level vector representations in two different architec-
tures. First, all code embeddings in a patient’s history
were summed to form a single patient-level vector. Sec-
ond, all code embeddings were summed per patient to
patient-level vectors During both processes, two types of
weights were added per code. The first was Inverse
Document Frequency (IDF), which grants higher impact
to less frequent codes than frequent ones and, thus, re-
duces the impact of frequently used administrative codes

for example. The second was a temporal weighting func-
tion (TWF), which takes into consideration the time
interval between the code’s date and the prediction date.
In this way, recent codes have more impact than the
previous ones. The results of this process were vectors
with a length of 100 representing each data component:
diagnosis, procedures, and medication.
We treated the prediction of ESRD risk as a binary

classification problem. For the analysis, we used the
Gradient Boosting trees algorithm (XGBoost implemen-
tation) [8].
As the data were imbalanced, the class-weighting ver-

sion of the XGBoost implementation was used, where
the minority represented was over-represented in the
algorithm training process in proportion to its’ relative
size from the population.
Gradient boosting tree is a machine-learning tech-

nique where several decision trees are fit to the data in a
stepwise manner where each newly fitted tree is
dependent on the previous one, and, thus, an ensemble
model is gradually fit so that the prediction loss function
is minimized using gradient descent. We randomly di-
vided the cohort into training (development and evalu-
ation of the algorithm’s prediction performance) and
testing (evaluating the algorithm’s prediction perform-
ance) samples in a ratio of 70:30 (70% training and 30%
testing). The model was trained using the training set
and the maximum depth of a tree, the minimum child
weight, and gamma, as well as the learning rate and the
number of trees constructed in the model were tuned by
using a 4-fold cross validation procedure. The 4-fold
cross validation was implemented on training data only.
In addition, we used a filter method for feature selec-

tion. All features with a correlation above 0.9 (correl-
ation coefficient) with another feature (only one from
the couple) were excluded. In addition, a deep neural
network model (DNN) was examined. This step was im-
plemented on the training data, and then the same se-
lected features were used in the test data. Furthermore,
all features that had a normal distribution were normal-
ized using the z-score formula (with the mean and std.
of the training set).
Final model results are reported using the testing set

by using the best performing model. Optimal model pa-
rameters are: max_depth = 6, min_child_weight = 2, n_
esitmators = 400, gamma = 0.5, and learning_rate = 0.1.
We compared the XGBoost model with other models,

including Logistic Regression with L1 Regularization,
Logistic Regression with L2 Regularization, Random For-
est and CatBoost.

Statistical analysis
We compared the patient characteristics by ESRD status
and by training and testing samples with unpaired, 2-

Fig. 1 Natural Language Processing with Word2vec algorithm for
feature embedding
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tailed t test, χ2 test and analysis of variance, or corre-
sponding nonparametric tests, as appropriate. All
analyses were performed using Python, version 3.7
(Python Software Foundation Inc.).

Results
Patient characteristics
Beneficiaries in the training (n = 19,657) and testing (n =
7334) samples had similar characteristics and outcome
distributions. The mean [SD] age was 70.72 [± 13.12] years
with 50% female patients in the control group, and 70.01
[± 11.95] with 47.1% females in the ESRD patients. The
median time to develop ESRD since the starting point of
the observation window was 3.35 years.
Clinical factors significantly varied between the case

and control groups of patients (Table 1). Positive cases

were 1147/19657 (5.8%) of the training population and
438/7334 (6%) in the test population.
In the diagnosis and procedures feature group, notable

examples of differences between the control and ESRD
patients were the count of acute kidney injury (AKI) per
year [0.43 vs. 0.88, p < 0.001], hypertensive crisis events
per year [0.44 vs. 1.39, p < 0.001] treatment for electro-
lyte imbalance per year [0.07 vs. 0.14, p value< 0.001],
count of fluid retention events per year [0.01 vs. 0.04,
p < 0.001], number of urinalysis exams per year [1.39 vs.
1.72, p < 0.001], and the count of kidney biopsies per
year [0.001 vs. 0.004, p < 0.001].
In the medication features category, notable examples

were annual prescriptions of loop diuretics [0.70 vs.
0.97, p < 0.0001]. However, for hypertensive treatment,
in a paradoxical fashion ESRD patients spent fewer days

Table 1 Comparison of calculated features between ESRD positive and ESRD negative patients (performed on all the data)

Feature Control group
ESRD negative
Mean (SD)
n = 25,406

Case group
ESRD positive
Mean (SD)
n = 1585

p-value

Acute kidney injury (AKI) episodes (per year) 0.43[±2.01] 0.88[±2.83] < 0.001

Electrolyte imbalance events (per year) 0.07[±0.41] 0.14[±0.72] < 0.001

Fluid retention events (per year) 0.01[±0.30] 0.04[±0.56] < 0.001

Urinalysis exams (per year) 1.39[±1.99] 1.72[±2.50] < 0.001

Kidney biopsies (per year) 0.001[±0.029] 0.004[±0.050] < 0.001

Days under ACEi treatment 66.83 ± [107.48] 55.97 ± [93.83] < 0.001

Hospitalizations 1.10[±2.40] 1.45[±2.83] < 0.001

Hypertensive crisis episodes (per year) 0.44[±0.99] 1.39[±2.37] < 0.001

Loop diuretics prescriptions (per year) 0.70[±1.86] 0.97[±1.97] < 0.001

Lab proteinuria 0.11[±0.51] 0.20[±0.69] < 0.001

Hyperparathyroidism 0.05[±0.33] 0.13[±0.56] < 0.001

Phosphorus abnormalities 0.0008[±0.020] 0.0127[±0.215] < 0.001

Chronic nephritic syndrome 0.001[±0.031] 0.012[±0.19] < 0.001

Non-nephrogenic complications of diabetes 0.58[±2.16] 0.81[±2.75] < 0.001

CHF (percent positives) 19.8% 27.3% < 0.001

Stroke (percent positives) 8.3% 10.5% 0.003

Ischemic heart disease (percent positive) 31.9% 39.3% < 0.001

Myocardial infarction 36.4% 56.1% < 0.001

Anemia 35.0% 45.8% < 0.001

Obesity 18.5% 12.3% < 0.001

Sex–Female 50% 47.1% 0.08

Sex–Male 50% 52.9% 0.08

Age (years) 70.72 [±13.12] 70.00 [±11.95] 0.83

CKD Stage 1, 6 months before index data 3.67% 0.82% < 0.001

CKD Stage 2, 6 months before index data 10.00% 3.09% < 0.001

CKD Stage 3, 6 months before index data 47.04% 35.01% < 0.001

CKD Stage 4, 6 months before index data 8.14% 52.55% < 0.001
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under ACEi treatment compared to the control group
[66.83 vs. 55.97, p < 0.001].
Significant differences were also found in the episode

category, where patients had more hospitalizations per
year [1.10 vs. 1.45, p < 0.001].
Figure 2 summarizes the results of the XGBoost

model. The C-statistic for the model was 0.93 (95% con-
fidence intervals for the C-statistic are [0.916–0.943]),

with a sensitivity of 0.715 and specificity of 0.958. Posi-
tive Predictive Value (PPV) was 0.517 and Negative
Predictive Value (NPV) was 0.981. For the top 1
percentile of patients identified by our model, the PPV
was 1.0. In addition, for the top 5 percentile of patients
identified by our model, the PPV was 0.71. All the re-
sults above were tested on the test data only, and the
threshold used to obtain these results was 0.1. We

Fig. 2 a: ROC Curve. Summary of the results of the XGBoost model. The C-statistic for the model was 0.93 (95% confidence intervals for the C-
statistic are [0.916–0.943]), with a sensitivity of 0.715 and specificity of 0.958. Positive Predictive Value (PPV) was 0.517 and Negative Predictive
Value (NPV) was 0.981. b: Precision Recall Curve
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estimated the confidence interval by bootstrapping the
ROC computations. Notable features contributing to the
model were chronic heart failure and ischemic heart
disease as a comorbidity, patient age, and number of
hypertensive crisis events.
To further investigate the capabilities of our model, a

subgroup analysis was carried out (Table 2). Patients
were divided into subgroups based on the following
criteria: early (Stages 1–2)/ late (Stages 3–4) CKD stage,
young (under 60)/older (over 60) years of age, and
gender so that each patient was ultimately referenced to
one of eight possible different subgroups. The final
trained model was implemented on each of the sub-
groups, as described in Table 2. As shown, optimal
results are achieved for young males with early stage dis-
ease, and worst results for young males with early stage
disease. In general, results are similar for the subgroups,
without a significant factor significantly contributing or
interfering with model performance.
Feature importance analysis (Table 3) performed on

the final trained model demonstrated age to be the most
important differentiating factor, followed by the highest
CKD stage diagnosed during the eligibility period, the
annual count of hypertensive crisis diagnosis, and the
presence of newly diagnosed (in the past year)
hypertension.
We compared the XGBoost model with other models,

including Logistic Regression with L1 Regularization,
Logistic Regression with L2 Regularization, Random
Forest and CatBoost. In addition, a deep neural
network model (DNN) was examined. Our model
achieved better results in all tested metrics. The follow-
ing figures display the ROC curve of all models, and
the Precision-Recall curve. Figure. 3 in the Additional
file 2 shows once more that the XGBoost model
achieved the best results in relation to the other models
(the blue curve) (Additional file 2).

Discussion
As ESRD demands kidney dialysis and involves severe
comorbidities, accurate prediction of patients who are
likely to deteriorate to ESRD at high likelihood of
mortality is critical. A variety of methods have been
proposed to predict ESRD .
Previous studies have built risk models using logistic

or cox regression to predict occurrence of chronic
kidney disease (CKD) and its progression in different
populations [7]. A number of studies emphasized on
building prediction tools for use in patients with CKD,
predicting kidney failure (AUC = 0.79 to 0.84), cardiovas-
cular events (AUC = 0.60 to 0.74), and all-cause mortal-
ity (AUC = 0.70 to 0.82) [9]. A multinational assessment
of risk models for predicting kidney failure in patients
with CKD stages 3 to 5 across different geographic

regions and patient populations through meta-analysis
showed an excellent discrimination across all cohorts
with an overall AUC of 0.90 at 2 years and 0.88 at 5 years
[10]. Moreover, some existing studies focused on pre-
dicting ESRD events in type 2 diabetes patients with
AUC ranging from 0.86 to 0.92 for 5-year risk [11–14],
while others focused on predicting DKD onset (AUC =
0.68 to 0.72) [15, 16] or major kidney events (e.g., doub-
ling of serum creatinine, renal replacement therapy, or
renal death) with AUC of 0.847 [17]. We herein detail
some of the methods suggested:
Barret and colleagues set out to determine whether

age and comorbidity can be used to predict death within
6 months of the first dialysis in a prospective cohort of
822 patients. No score cutoff was successful in predict-
ing high true-positive and low false-positive rates. Sev-
eral factors including age, severity of heart failure,
arrhythmias, malnutrition, and malignancy were inde-
pendent prognostic predictors in multivariate models.
However, no model was able to accurately predict death
within 6 months [18].
Antineutrophil cytoplasmic antibody (ANCA)–associ-

ated vasculitides are autoimmune disorders leading to
irreversible damage to affected organs. Recently, a new
scoring system has been validated as a clinical–patho-
logical method to improve prediction in CKD [19].
Diabetes mellitus is the most common cause of

ESRD, leading Wan and colleagues to develop a 5-year
ESRD risk prediction model among Chinese patients
with type-2 diabetes mellitus in primary care. In a
retrospective cohort study, they recruited 149,333
Chinese diabetic adults without ESRD in 2010. Using
the cohort over 5 years of follow-up, gender-specific
models were derived [13]. The models showed discrim-
ination of 0.866 (males) and 0.862 (females). Age, use
of anti-hypertensive drugs, anti drugs, hemoglobin
A1c, blood pressure, urine albumin/creatinine ratio
(ACR), and estimated glomerular filtration rate (eGFR)
were all predictors. Specific predictors for males were
smoking and the presence of serious diabetic retinop-
athy, while important predictors for females included
longer duration of diabetes and higher body mass
index. Interaction factors included need for insulin and
urine ACR in younger males, and eGFR in younger
females [13].
The Kidney Failure Risk Equation (KFRE) employs

four variables: age, sex, urine albumin-to-creatinine ratio
(ACR), and eGFR in individuals with CKD to predict the
risk of ESRD and the need for dialysis or a kidney trans-
plant within 2–5 years. In a recent study, Major et al.
attempted to validate these predictors [20]. The recali-
brated KFRE avidly predicted ESRD risk at 2 and 5 years
in primary care. The authors proposed to introduce this
model in primary care to reduce unnecessary referrals to

Segal et al. BMC Nephrology          (2020) 21:518 Page 6 of 10



Fig. 3 (See legend on next page.)
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secondary care, and earlier referrals for patients who are
likely to develop ESRD [20].
Unlike traditional statistics, machine learning tests nu-

merous predictors by combining them in highly inter-
active computational methods. In the model construction
phase, the model generates decision trees aiming to iden-
tify success rates of treatment. The model’s success is
tested by using 80% of the data for construction and 20%
for examination of performance. This process is repeated
by dividing the derivation set into new and different learn-
ing and testing subsets. The model created by these steps
is then applied on previously unused data [21–24].
Our model, based on big data analytics, has shown very

high predictive values with c-statistics of 0.93, sensitivity
of 0.715, and specificity of 0.958. This model is unique in
using insurance claims data. As claims data do not include
direct information on chronic conditions, we used the
Center for Medicare and Medicaid Services’ Chronic Con-
dition Data Warehouse (CCW) algorithm standard, in
which patients are assigned a categorical score for each
chronic condition according to the prevalence of ICD 9 or
ICD10 code within a given timeframe [4]. CCW status is
calculated in 3 time frames for each condition - immediate
status (3months before index date), recent (1 year before
index date) or ever (any time within the trial window).
This study has several potential limitations that

should be acknowledged. Claims data are restricted to

billable elements in the patient’s medical history,
often without a clinical context and reasoning. As key
information may not be included in claims data, the
reliance of our model on the billable ICD9 and
ICD10 codes may limit assessment of the correctness
of the diagnosis. To overcome the gap that claims
data do not include direct information on chronic
conditions, we used the Center for Medicare and Me-
dicaid Services’ Chronic Condition Data Warehouse
(CCW) algorithm standard, in which patients are
assigned a categorical score for each chronic condi-
tion according to the prevalence of ICD 9 or ICD10
code within a given timeframe [4]. Future studies
should further contrast billing data with other forms
of EMR data. Because American EMR data are limited
and dispersed among different providers, the much
bigger scale of the claims than any other available
EMR data, they may increase the overall detection
rate of early identification of ESRD. For example, our
model could be implemented for stakeholders such as
integrated health systems (e.g., health maintenance or-
ganizations) where the provider and the payor are in-
herently linked. In Maccabi Health Services in Israel,
an algorithm for early detection of colon cancer based
on routine CBC, is linked to patients’ charts and
sends the physician a warning to initiate further refer-
rals and diagnostic tests [25]. Similary, it can be used

(See figure on previous page.)
Fig. 3 Figure 3 presents different other models that were tested. The c-statistics for the Logistic Regression with L1 Regularization model was
0.901 ([0.884–0.917] 95% confidence interval), with a sensitivity of 0.7 and specificity of 0.928. Besides, the PR-AUC was 0.6 and the F1 score was
0.495. Positive Predictive Value (PPV) was 0.382 and Negative Predictive Value (NPV) was 0.9799. For the top 1 percentile of patients identified by
our model, PPV was 0.97. In addition, for the top 5 percentile of patients identified by our model, PPV was 0.62. The threshold used to obtain
these results was 0.121. Furthermore, the c-statistics for the CatBoost model was 0.918 ([0.903–0.932] 95% confidence interval), with a sensitivity of
0.7 and specificity of 0.94. Besides, the PR-AUC was 0.653 and the F1 score was 0.53. Positive Predictive Value (PPV) was 0.426 and Negative
Predictive Value (NPV) was 0.980. For the top 1 percentile of patients identified by our model, PPV was 0.97. In addition, for the top 5 percentile
of patients identified by our model, PPV was 0.66. The threshold used to obtain these results was 0.132. In order to test these models, bounds
were chosen according to physicians’ achievement requirements in each model sensitivity (recall) of 0.7–0.8. The figures above show that our
model gets better results in other scenarios as well (Fig. 3)

Table 2 Subgroup analysis. Patients were divided into subgroups based on the following criteria: early (Stages 1–2)/ late (Stages 3-
4) CKD stage, younger (under 60)/older (over 60) age, and gender so that each patient was ultimately referenced to one of eight
possible different subgroups. The final trained model was implemented on each subgroup

Subgroup size Positive cases C- statistics Sensitivity Specificity PPV NPV

Males ckd S3/S3. Age 60+ 1784 164 0.919 0.756 0.931 0.528 0.974

Males,ckd S3/S4, Age 60- 348 44 0.878 0.659 0.908 0.509 0.948

Males ckd S1/S2 Age 60+ 1061 16 0.925 0.625 0.983 0.357 0.995

Males ckd S1/S2, Age 60- 559 5 0.968 0.600 0.982 0.231 0.996

Females ckd S3/S4 Age 60+ 1862 152 0.918 0.711 0.944 0.529 0.973

Females ckd S3/S4 Age 60- 230 34 0.891 0.765 0.913 0.605 0.957

Females ckd S1/S2 Age 60+ 1064 13 0.906 0.765 0.991 0.526 0.997

Females ckd S1/S2 Age 60- 426 10 0.918 0.300 0.993 0.500 0.983
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by hospitals and hospital networks linking health care
providers with the algorithm based on their claim
data.
We used an ensemble tree method (XGBoost) and it

can be argued that other methods, such as linear/logistic
regression, may be superior. However, when comparing
the XGBoost model with other models, including Logis-
tic Regression with L1 Regularization, Logistic Regres-
sion with L2 Regularization, Random Forest and
CatBoost and deep neural network model (DNN), our
model achieved better results in all tested metrics.

Conclusion
The way this new algorithm may be tested and validated
by the stakeholder, for example- health maintenance
organization and hospitals, when a patient is ap-
proaching the threshold ESRD risk, a warning message
can be sent electronically to the physician, to initiate a
referral to for a nephrology consultation. An investiga-
tion of the specific context of the individual will allow
validation, facilitation of a diagnosis and initiation of
management when appropriate.

Supplementary information
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1186/s12882-020-02093-0.
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Table 3 Feature importance analysis

Feature Feature importance

Age 0.030

CKD stage 0.018

Hypertensive crisis events per year 0.016

Recently diagnosed hypertension 0.013

Total drug prescriptions per year 0.010

Total cost of outpatient specialist visits per year 0.007

Annual medication costs 0.006

Hypertensive nephropathy 0.006

Recently diagnosed hyperlipidemia 0.006

Time gap between last CKD stage diagnosis to most recent 0.004

Number of urinalysis tests per year 0.004

Ever diagnosis of hypertension 0.004

Total cost of ER and inpatient visits per year 0.003

Total annual claims costs 0.003

Acute kidney injury events per year 0.002

Anemia of CKD 0.002

Recently diagnosed diabetes 0.002

This analysis performed on the final trained model demonstrated age to be the most important differentiating factor, followed by the highest CKD stage
diagnosed during the eligibility period, the annual count of hypertensive crisis diagnoses, and the presence of newly diagnosed (in the past year) hypertension
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