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Abstract 

Background:  Host factors such as angiotensin-converting enzyme 2 (ACE2) and the transmembrane protease, 
serine-subtype-2 (TMPRSS2) are important factors for SARS-CoV-2 infection. Clinical and pre-clinical studies demon-
strated that RAAS-blocking agents can be safely used during a SARS-CoV-2 infection but it is unknown if DPP-4 inhibi-
tors or SGLT2-blockers may promote COVID-19 by increasing the host viral entry enzymes ACE2 and TMPRSS2.

Methods:  We investigated telmisartan, linagliptin and empagliflozin induced effects on renal and cardiac expression 
of ACE2, TMPRSS2 and key enzymes involved in RAAS (REN, AGTR2, AGT) under high-salt conditions in a non-diabetic 
experimental 5/6 nephrectomy (5/6 Nx) model. In the present study, the gene expression of Ace2, Tmprss2, Ren, Agtr2 
and Agt was assessed with qRT-PCR and the protein expression of ACE2 and TMPRSS2 with immunohistochemistry in 
the following experimental groups: Sham + normal diet (ND) + placebo (PBO); 5/6Nx + ND + PBO; 5/6Nx + high salt-
diet (HSD) + PBO; 5/6Nx + HSD + telmisartan; 5/6Nx + HSD + linagliptin; 5/6Nx + HSD + empagliflozin.

Results:  In the kidney, the expression of Ace2 was not altered on mRNA level under disease and treatment condi-
tions. The renal TMPRSS2 levels (mRNA and protein) were not affected, whereas the cardiac level was significantly 
increased in 5/6Nx rats. Intriguingly, the elevated TMPRSS2 protein expression in the heart was significantly normal-
ized after treatment with telmisartan, linagliptin and empagliflozin.

Conclusions:  Our study indicated that there is no upregulation regarding host factors potentially promoting SARS-
CoV-2 virus entry into host cells when the SGLT2-blocker empagliflozin, telmisartan and the DPP4-inhibitor blocker 
linagliptin are used. The results obtained in a preclinical, experimental non-diabetic kidney failure model need confir-
mation in ongoing interventional clinical trials.
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Background
Cardiovascular and renal diseases are considered as risk 
factors for increased coronavirus disease 2019 (COVID-
19) disease severity and worse outcomes, including 
higher mortality. During the COVID-19 pandemic, tight 
control of glucose levels and prevention of complications 
associated with diabetes might be crucial in patients with 
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diabetes to lower the susceptibility and severe course of 
COVID-19. Recent studies suggest that drugs interfering 
with the renin–angiotensin–aldosterone system (RAAS) 
or dipeptidyl peptidase 4 (DPP4) inhibitors can be used 
safely in patients with diabetes mellitus and COVID-19 
[1–3]. In addition, the use of sodium-glucose cotrans-
porter 2 (SGLT2) blockers seems to be a promising 
adjunct treatment option in patients with SARS-CoV2 
infection and type 2 diabetes mellitus (T2DM) whereas 
an increased risk of protracted ketonemia and diabetic 
ketoacidosis was also reported [4].

ACE2 plays a central role in the regulation of RAAS 
and is involved in cardiac function, the development of 
hypertension and diabetes mellitus [5]. ACE2 exerts its 
protective effects by converting pro-inflammatory and 
pro-hypertensive AngII into anti-inflammatory and 
anti-hypertensive Ang1-7. ACE2 has been identified as 
a receptor for coronaviruses, including SARS-CoV-2. 
Once attached to ACE2 through the binding with the 
receptor binding domain in the viral spike protein, it 
is primed by the host TMPRSS2, which can enhance 
this endocytic way of entry but is not essential [6, 7]. 
An alternative route of viral entry is the direct fusion 
of the viral envelope and the cell membrane which is 
ACE2- and TMPRSS2-independent [8]. Increased ACE2 
expression was observed as a response to inflamma-
tion, heart failure, lung injury and fibrosis [9–12] which 
led to increased AngII level and might facilitate the viral 
entry. In contrast, AngII can induce the internalization 
and degradation of ACE2 in an AT1R-dependent man-
ner [13]. In addition, MERS-CoV binds to human DPP4/
CD26 to infect host cells [14] and a recent study predicts 
the structure of the SARS-CoV-2 spike glycoprotein and 
its glycan shield pattern suggests that DPP4/CD26 might 
be a receptor for SARS-CoV-2 [15] which needs further 
validation. The increased presence of ACE2 or DPP4 
might contribute to increased disease severity of infected 
patients.

In experimental preclinical models, the effects of RAAS 
blocking drugs on cardiac and renal ACE2 mRNA and/
or protein expression led to controversial results. Ace2 
mRNA expression was increased in the left ventricle 
of normotensive rats after lisinopril or losartan treat-
ment [16] whereas no increase in Ace2 mRNA level was 
observed after coronary artery ligation and treatment 
with valsartan, ramipril or both compared to control [17]. 
In kidneys, telmisartan treatment resulted in increased 
expression of renal Ace2 mRNA expression [18]. No 
effects on renal Ace2 and Tmprss2 mRNA expression 
after telmisartan treatment were previously verified in an 
independent study [19]. In a recent study, it was shown 
that captopril and telmisartan both decrease kidney 
ACE2 protein in kidney membranes without significantly 

affecting protein abundance in total kidney lysates. Cap-
topril significantly reduced ACE2 protein in kidney 
membranes while cytosolic ACE2 was increased [20]. 
Importantly, mice with comorbid diabetes (aging, high 
fat diet and streptozotocin-induced diabetes) are char-
acterized by increased renal Ace2 mRNA expression but 
not further affected after telmisartan treatment which 
led to the conclusion that the increased ACE2 level is a 
consequence of the comorbidity and not an effect after 
RAAS blockade [19].

Dietary salt intake is a known risk factor for hyperten-
sion and is associated with an imbalance of the RAAS. 
The high salt diet fed spontaneously hypertensive rats 
(SHR) showed slightly decreased cardiac Ace2 mRNA 
and protein expression [21] and renal expression was 
attenuated in uni-nephrectomized rats with subsequent 
high salt diet intake [22] but the effects of RAAS block-
ing drugs in a salt-induced experimental model have 
not been investigated yet. Recognizing that people with 
chronic kidney disease, who are often consuming a high-
salt diet and commonly prescribed RAAS blocking drugs 
and/or DPP4-inhibitor and/or SGLT2 blocker, are at 
increased risk of severe COVID-19 outcomes, we studied 
the expression profiles of ACE2 and TMPRSS2 and other 
genes involved in the RAAS in the kidney and the heart 
in a rat model that mimics this phenotype (impaired kid-
ney function combined with a high salt intake – most 
patients consume unfortunately several times more salt 
than they actually should control blood pressure). Here 
we used the rat 5/6 nephrectomy model, one of the 
most well-established experimental non-diabetic CKD 
model which is characterized by increased hypertension, 
inflammation and fibrosis.

Methods
Animals
The animal experiment was approved by the labora-
tory animal ethics committee (20,170,904,092,822, Jinan 
University, Guangzhou, China) following University 
Guidelines for Use of Laboratory Animals. A total of 91 
male Wistar rats were assigned to the following groups: 
Sham + ND + PBO (n = 14); 5/6 Nx ND + PBO (n = 12); 
5/6 Nx + HSD + PBO (n = 23); 5/6 Nx + HSD + telmisar-
tan (5  mg/kg/day; n = 15); 5/6 Nx + HSD + linagliptin 
(3  mg/kg/day; n = 14); 5/6 Nx + HSD + empagliflozin 
(1.2  mg/kg/day; n = 13). The normal diet was standard-
ized using AIN93M [23] and the high salt diet was 
adjusted to a 2% level of sodium chloride on this basis. 
The two feeds were produced under the codes LAD 
3001 M and LAD0011HF2 (Trophic Animal Feed High-
Tech Co., Ltd, China). The doses of telmisartan and 
linagliptin have been used in previous studies [24, 25]. 
Drug treatment via gavage was administered from week 
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3 until sacrifice (week 11). The rats were sacrificed at 
week 11 and plasma. Pentobarbital sodium (36–39  mg/
kg body weight) was used to anesthetize the rats, which 
was administered intraperitoneally. Urine and perfused 
kidney and heart samples were collected and frozen 
until further analysis (Fig.  1). All experimental proce-
dures (surgery, blood pressure measurements, metabolic 
cages, as well as plasma and urine analyses) were done as 
describe previously [26].

Blood pressure measurement
Blood pressure was measured by non-invasive tail cuff 
plethysmography of the tail artery at week 11. The animal 
was placed in a restrainer, i.e. a tubular construction from 
which only the tail of the animal protruded. Then a blood 
pressure cuff and an electronic transducer were fixed to 
the tail of the animal. We waited until the animals were 
relaxed and got used to the restrainer. At intervals of 30 s, 
at least three measurements were taken to obtain reliable 
means of blood pressure. To get the animals used to this 
procedure, animals were trained before the actual meas-
urement. The blood pressure diagrams and pulses were 
recorded and evaluated using the IITC Life Science tail 
cuff plethysmography blood pressure systems (IITC Life 
Science Inc., Woodland Hills, CA, USA).

Biochemical evaluations
EDTA was added to blood samples followed by centrifu-
gation (4,500  rpm) for 20  min at 4 ℃, then plasma was 
collected and stored at -20 ℃ until analysis. Urine sam-
ples were centrifuged (12,000 rpm) for 10 min at 4 ℃. The 

supernatant was frozen in liquid nitrogen until analy-
sis. Levels of plasma creatinine, urea, glucose, and insu-
lin as well as urinary creatinine, and total protein were 
detected using an automatic biochemistry analyzing sys-
tem (Roche Cobas 6800, Roche Ltd, Switzerland). Levels 
of plasma BNP45 and urinary albumin were determined 
quantitatively using Rat BNP 45 ELISA Kit (Abcam, 
Cat#ab108816) and Rat Albumin ELISA Kit (Abcam, 
Cat#ab235642). The glomerular filtration rate-to-body 
weight ratio (GFR), albumin-to-creatinine ratio (ACR) 
were calculated. At a dose of 1 mg/day of empagliflozin 
urinary sodium and potassium excretion are not affected 
(data not shown).

RNA isolation and quantitative real‑time PCR (qRT‑PCR)
Snap frozen kidney and heart tissues were homogenized 
with Precellys lysis with Precellys Steel 2.8  mm beads 
(PeqLab Biotechnology, Erlangen, Germany) and total 
RNA was isolated using the RNeasy Fibrous Tissue Mini 
Kit (QIAGEN, Hilden, Germany). Quality control and 
total RNA yield were quantified using the NanoDrop 
ND-1000 spectrophotometer (ThermoScientific, Wilm-
ington, United States, DE). Renal and cardiac mRNA 
levels of Angiotensin I Converting Enzyme 2 (Ace2), 
Transmembrane Protease Serine Subtype 2 (Tmprss2), 
Renin (Ren), Angiotensin Receptor Type 2 (Agtr2) and 
Angiotensinogen (Agt) were analyzed by qRT- PCR on a 
SDS7900HT real-time PCR system (Applied Biosystems 
by ThermoFisher Scientific). Glyceraldehyde 3-phosphate 
dehydrogenase (Gapdh) was used as a housekeeping 
gene and experimental details were detailed previously 

Fig. 1  Time course of the animal study. SBP systolic blood pressure measurement, DBP diastolic blood pressure measurement; MC metabolic cages, 
OP1 amputation of the poles of left kidney, OP2 uninephrectomy on the right side, Uni-Nx unilaterally nephrectomized
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[27]. All samples were run in duplicates and raw ct values 
were calculated using the SDS software v.2.4. All values 
were normalized to the mean expression level of the con-
trol group (Sham + ND + PBO) and the fold-change of 
expression compared to the control was calculated using 
the comparative Ct method (2-ΔΔct) [28].

Immunohistochemistry
Kidney and cardiac tissue specimens were embedded 
in paraffin after fixation with 4% paraformaldehyde, cut 
into 3-μm paraffin sections for immunohistochemical 
staining. Sections were de-waxed twice using xylene and 
rehydrated with graded ethanol. After microwave anti-
gen-retrieval, sections were blocked with 5% non-fat dry 
milk in phosphate-buffered saline/Tween 20 (PBS-T) for 
one hour and incubated respectively with primary anti-
bodies specific to ACE2 (1:100 dilution; ab15348, Abcam, 
Cambridge, MA) and TMPRSS2 (1:50 dilution; EPR3861, 
ab92323, Abcam, Cambridge, MA) in 5% non-fat dry milk 
in PBS-T overnight at 4 °C. The sections were repeatedly 
washed 5 times with PBS-T, incubated with matching flu-
orescent secondary antibody (1:200, ab150075; Abcam) 
in PBS-T, and mounted with Fluoroshield mounting 
medium with 4′,6-diamidino-2-phenylindole (ab104139; 
Abcam). The fluorescent images were captured as 
described recently and analyzed using a computer-aided 
image analysis system as described previously [26].

Statistical analysis
Statistical analyses were performed using GraphPad 
Prism 7 software (GraphPad, La Jolla, CA). The analy-
sis of variance test followed by the Bonferroni post hoc 
test was applied for comparison of normally distributed 
data, and the data were presented as mean ± SEM. The 
Kruskal–Wallis test followed by Dunn’s post hoc test 
was used for non-normally distributed data, and the data 
were presented as median (25th—75th percentile), In all 
cases, differences were regarded as statistically significant 
if P < 0.05.

Results
Effects of salt, telmisartan, linagliptin and empagliflozin 
on clinical and biochemical parameters
At the end of the study high salt diet-fed placebo-treated 
5/6 Nx rats (5/6 Nx + HSD + PBO) were characterized 
by significantly higher relative left kidney and relative 
heart weights, final systolic and diastolic blood pressures, 
final plasma creatinine, final urinary ACR level and final 
24 h urinary protein excretion compared to normal-diet 
fed placebo-treated sham control rats (Table 1). In high 
salt diet-fed 5/6 Nx rats, treatment with telmisartan (5/6 
Nx + HSD + TELM) significantly decreased the final body 
weight, final systolic and diastolic blood pressures versus 

5/6 Nx + HSD + PBO rats (Table 1). Linagliptin treatment 
of high salt diet-fed 5/6 Nx rats (5/6 Nx + HSD + LINA) 
resulted in significantly decreased final body weight and 
final systolic blood pressure, whereby empagliflozin treat-
ment led to significantly decreased relative liver weight 
compared to 5/6 Nx + HSD + PBO rats (Table 1).

Effects of salt, telmisartan, linagliptin and empagliflozin 
on renal and cardiac mRNA expression of genes associated 
with SARS‑CoV‑2 host factors and RAAS
In order to investigate the effects of salt, telmisartan, 
linagliptin and empagliflozin on the gene expression lev-
els of the two key SARS-CoV-2 host factors Ace2 and 
Tmprss2 and genes involved in the RAAS, such as Ren, 
Agtr2 and Agt, in the kidney and heart qRT-PCR was per-
formed. Overall, the expression of Ace2 was not affected 
in both kidney and heart in all experimental groups. 
Telmisartan and empagliflozin significantly increased 
the renal Tmprss2 gene expression compared to 5/6 
Nx + HSD + PBO rats whereas the cardiac Tmprss2 
expression was below the detection limit (Table  2). 
Importantly, telmisartan and empagliflozin increased 
Tmprss2 mRNA levels are not significantly altered com-
pared to the control group (Sham + ND + PBO).

Renal Ren expression was significantly decreased 
in 5/6 Nx + ND + PBO, 5/6 Nx + HSD + PBO and 
5/6 Nx + HSD + LINA groups compared to the 
Sham + ND + PBO control group. Telmisartan and 
empagliflozin significantly normalized the renal expres-
sion of Ren versus 5/6 Nx + HSD + PBO rats (Table  2), 
whereas Agtr2 and Agt were not significantly affected in 
any experimental groups (Table 2).

Effects of salt, telmisartan, linagliptin and empagliflozin 
on renal and cardiac expression of proteins associated 
with SARS‑CoV‑2 host factors
In the next step we examined the ACE2 and TMPRSS2 
protein expressions in the kidney and heart using poly-
clonal ACE2 and TMPRSS2 antibodies as described 
previously [19]. The renal ACE2 protein expression 
was significantly decreased in the placebo or telmisar-
tan treated high-salt diet fed 5/6 Nx rats compared to 
Sham + ND + PBO rats whereby linagliptin significantly 
increased the ACE2 protein levels in 5/6 Nx + HSD rats 
(Fig. 2A, B, Table 2) characterized by normalized ACE2 
protein levels compared to Sham + ND + PBO or 5/6 
Nx + ND + PBO rats (Fig.  2A, B, Table  2). In the cor-
responding heart tissues, there was no major change in 
ACE2 protein levels in all experimental groups (Table 2).

In kidneys the TMPRSS2 protein level was not signifi-
cantly altered by the respective treatments. In contrast, 
in 5/6 Nx + ND + PBO and 5/6 Nx + HSD + PBO rats the 
cardiac TMPRSS2 expression was significantly increased 
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compared to Sham + ND + PBO control rats (Fig.  2C, 
D, Table  2). Notably, telmisartan, linagliptin and empa-
gliflozin normalized the increased cardiac TMPRSS2 
level compared to 5/6 Nx + HSD + PBO rats (Fig. 2C, D, 
Table 2).

We observed that in the kidney ACE2 is present in epi-
thelial cells of the proximal tubule and distal tubule and 
a weak glomerular visceral ACE2 staining was observed, 

whereas the parietal and visceral epithelial cells were 
moderately positive (Fig. 3A) which was described previ-
ously [29, 30]. ACE2 is also observed in arterial endothe-
lial cells (Fig.  3B). Moreover, ACE2 was predominantly 
found in tubules and a lesser extent in glomeruli. This is 
consistent with other studies also performed in rat kidney 
that found Ace2 mRNA expression in tubules to be signif-
icantly higher expressed compared with in glomeruli [31, 

Table 1  Clinical/Biochemical parameters

GFR/BW (ml/24 h/g) = [urinary creatinine * urinary flow (ml/min)]/[serum creatinine * body weight]

Urinary ACR (mg/mmol) = urinary albuminuria / urinary creatinine

Normally distributed data were given as mean ± SEM. Non-normally distributed data were given as median (25th–75th percentile)
#a p < 0.05 vs. Sham + ND + PBO, *bp < 0.05 vs. 5/6Nx + HSD + PBO

Sham + ND + PBO 
(n = 12–13)

5/6Nx + ND + PBO 
(n = 12–13)

5/6Nx + HSD + PBO 
(n = 15–23)

5/6Nx + HSD + TELM 
(n = 11–15)

5/6Nx + HSD + LINA 
(n = 13–15)

5/6Nx + HSD + EMPA 
(n = 10–11)

Final body 
weight (g)

475.35 ± 12.04 448.50 ± 17.38 443.35 ± 10.65 394.65 ± 12.51ab 382.39 ± 12.44ab 420.03 ± 11.68a

Relative 
left kidney 
weight 
(mg/g)

3.20(2.93–3.46)b 3.44(2.93–3.46) 3.64(3.31–4.35)a 3.56(3.15–4.26) 3.72(3.41–4.13)a 3.94(3.49–4.46)a

Relative 
heart weight 
(mg/g)

2.74 ± 0.06b 3.03 ± 0.08 3.74 ± 0.21a 3.97 ± 0.33a 3.77 ± 0.23a 3.58 ± 0.13a

Relative 
liver weight 
(mg/g)

24.03(23.27–25.62) 24.25(23.27–25.62) 26.46(22.36–27.54) 21.94(21.24–24.01) 22.88(21.80–24.56) 21.70(20.99–22.58)ab

Final systolic 
blood pres-
sure (mm 
Hg)

124.66(118.33–
130.50)b

153.66(118.33–
130.50)a

153.00(149.00–
163.66)a

127.33(118.00–
129.66)b

133.83(129.75–
142.25)b

126.33(124.66–131.00)

Final diastolic 
blood pres-
sure (mm 
Hg)

101.56 ± 2.43b 122.77 ± 3.68a 123.61 ± 2,21a 99.36 ± 2.47b 116.52 ± 3.01a 98.63 ± 2.56b

Final plasma 
creatinine 
(μmol/l)

46.92 ± 0.76b 72.38 ± 2.27 84.78 ± 7.61a 102.80 ± 12.04a 95.71 ± 6.38a 88.80 ± 4.64a

Final plasma 
urea (mmol/l)

4.89 ± 0.21 11.18 ± 1.08 12.66 ± 3.46 16.94 ± 1.86a 15.84 ± 2.22a 14.87 ± 0.72

Final plasma 
glucose 
(mmol)

6.08(5.62–7.18) 9.03(5.62–7.18)# 6.52(5.36–7.69) 6.25(5.14–6.85) 7.16(6.20–8.51) 6.31(5.42–6.59)

Final plasma 
insulin (μg/l)

0.72(0.38–1.37) 0.53(0.38–1.37) 0.30(0.22–0.83) 0.20(0.10–0.33)a 0.19(0.13–0.51)a 0.18(0.09–0.32)a

Final plasma 
BNP45 (ng/
ml)

2.23 ± 0.49 1.92 ± 0.30 2.13 ± 0.32 2.11 ± 0.32 2.15 ± 0.31 1.91 ± 0.41

GFR/BW 
(ml/24 h/g)

1.97(1.23–3.15) 1.62(1.23–3.15) 1.99(1.47–2.11) 1.47(1.22–1.72) 1.41(1.31–1.73) 1.74(1.34–2.15)

Final urinary 
creatinine 
(mmol/l)

11.41(6.39–15.23) 6.49(6.39–15.23) 6.74(4.64–8.69) 5.34(3.84–6.05)a 5.53(4.67–6.89)a 5.42(4.89–8.03)

Final urinary 
ACR (mg/
mmol)

1.51(1.27–2.27)b 6.89(5.51–15.82)ab 38.49(11.10–282.90)a 44.10(2.57–249.2)a 92.80(20.31–219.70)a 34.87(9.45–230.80)a

Final 24 h 
urinary pro-
tein excretion 
(mg/24 h)

4.81(4.23–5.79)b 7.17(6.35–10.47)b 11.63(7.48–36.08)a 19.97(5.04–28.9)a 12.38(5.51–21.84)a 10.56(7.35–21.92)a
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32]. In the heart, ACE2 was found stronger expressed 
in myocytes than in arteries [33](Fig. 3C). TMPRSS2, in 
the kidney, was higher expressed in the distal convoluted 
tubule, but less expressed in the proximal tubule [34]
(Fig. 3D), arteries and glomeruli (Fig. 3E) whereas in the 
heart, TMPRSS2 is predominantly expressed in myocytes 
(Fig. 3F).

Discussion
We used the ARB telmisartan, the DPP-4 inhibitor lina-
gliptin and the SGLT2 blocker empagliflozin, in doses 
where we found positive pharmacodynamic action on 
systolic and diastolic blood pressures for all drugs under 
high salt diet conditions in the well-established experi-
mental non-diabetic rat 5/6 nephrectomy. Our study 
shows that the induced effects on renal and cardiac 
mRNA and protein expression of the two key host pro-
teins for SARS CoV-2 viral host cell entry (ACE2 and 
TMPRSS2) do not provide any evidence about facilitat-
ing SARS CoV-2 virus infection via the above-mentioned 
host receptors. The renal and cardiac gene expression 
level of Ace2 was not affected either under disease con-
ditions or under treatment conditions. Recently, it was 
demonstrated that the renal Ace2 expression was not 

significantly altered in a STZ/high fat diet induced dia-
betic mouse model even if the animals were treated with 
ramipril (ACE inhibitor) or telmisartan [19], whereas 
the ACE2 protein expression was increased in this dia-
betic model independent of any treatment regimen. Our 
experimental model showed no effects on ACE2 pro-
tein expression after 5/6 nephrectomy in both the kid-
ney and heart. Interestingly, high salt conditions led to 
significantly lower ACE2 level in the kidney which was 
normalized by linagliptin treatment, whereas the cardiac 
levels were unaffected. Linagliptin treatment significantly 
increased renal ACE2 level whereas this expression level 
was similar to the control groups sham and 5/6 Nx nor-
mal diet-fed rats. A recent study demonstrated that the 
administration of linagliptin significantly increased the 
ACE2 expression, which is consistent with this find-
ing[35]. In addition, our study also revealed no significant 
effects on TMPRSS2 level (mRNA and protein) in the 
kidney which is consistent with previous finding in the 
experimental diabetes model [19]. However, the cardiac 
TMPRSS2 protein expression was significantly increased 
in the heart after 5/6 Nx and all drug interventions led 
to normalized cardiac TMPRSS2 suggesting a beneficial 
effect with regards to lower viral entry targets.

Table 2  Renal and cardiac mRNA expression of SARS-CoV-2 host factors and genes involved in RAAS

Normally distributed data were given as mean ± SEM. Non-normally distributed data were given as median × 106 (25th–75th percentile × 106). ap < 0.05 vs. 
Sham + ND + PBO, bp < 0.05 vs. 5/6Nx + HSD + PBO

Sham + ND + PBO 
(n = 6)

5/6Nx + ND + PBO 
(n = 6)

5/6Nx + HSD + PBO 
(n = 5–6)

5/6Nx + HSD + TELM 
(n = 6)

5/6Nx + HSD + LINA 
(n = 6)

5/6Nx + HSD + EMPA 
(n = 6)

mRNA expression (kidney)

  Ace2 1.02 ± 0.09 1.19 ± 0.30 1.01 ± 0.33 1.14 ± 0.14 1.47 ± 0.47 1.33 ± 0.33

  Tmprss2 1.03 ± 0.12 0.50 ± 0.09 0.86 ± 0.09 2.11 ± 0.41b 0.97 ± 0.08 4.23 ± 2.92b

  Ren 1.06 ± 0.18 0.06 ± 0.02ab 0.06 ± 0.04a 1.56 ± 0.56b 0.12 ± 0.03a 2.52 ± 1.17b

  Agtr2 1.03 ± 0.13 0.78 ± 0.21 1.08 ± 0.19 1.02 ± 0.13 0.84 ± 0.16 3.09 ± 1.41

  Agt 1.10 ± 0.24 1.13 ± 0.28 1.02 ± 0.24 1.63 ± 0.29 1.57 ± 0.17 4.32 ± 1.67

mRNA expression (heart)

  Ace2 1.04 ± 0.19 0.94 ± 0.06 1.17 ± 0.08 1.08 ± 0.08 0.77 ± 0.06 1.03 ± 0.08

  Tmprss2 n.d n.d n.d n.d n.d n.d

  Ren n.d n.d n.d n.d n.d n.d

  Agtr2 1.01 ± 0.06 1.06 ± 0.07 1.13 ± 0.09 0.98 ± 0.06 0.91 ± 0.09 0.97 ± 0.5

  Agt 1.04 ± 0.12 1.79 ± 0.23 0.95 ± 0.04 1.19 ± 0.20 0.77 ± 0.09 0.92 ± 0.07

Sham + ND + PBO 
(n = 12–14)

5/6Nx + ND + PBO 
(n = 7–12)

5/6Nx + HSD + PBO 
(n = 15–20)

5/6Nx + HSD + TELM 
(n = 7–11)

5/6Nx + HSD + LINA 
(n = 10–13)

5/6Nx + HSD + EMPA 
(n = 6–9)

protein expression

  ACE2 
(kidney)

29.89 27.10 13.96 14.14 33.25 17.07

(20.82–36.55) (19.39–30.73) (12.36–19.14)a (9.35–19.34)a (18.55–39.25)b (12.59–19.96)

  ACE2 
(heart)

27.77 33.11 29.12 27.42 24.39 33.21

(25.58–32.96) (30.74–36.34) (23.97–32.42) (24.57–31.01) (22.32–29.63) (26.57–35.92)

  TMPRSS2 
(kidney)

13.44 13.88 12.77 12.35 12.21 11.60

(11.64–17.31) (11.89–15.73) (8.53–14.21) (10.79–18.26) (9.72–13.90) (10.62–13.29)

  TMPRSS2 
(heart)

11.90 29.57 25.23 10.40 7.85 12.00

(10.63–15.00) (25.12–33.16)a (16.18–30.46)a (8.60–18.57)b (6.03–13.39)b (8.59–16.27)b
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The discrepancy between changes in ACE2 and 
TMPRSS2 mRNA and protein expression was previ-
ously described in mouse and human studies [19, 36–38] 
indicating that the expression of ACE2 and TMPRSS2 is 
regulated at the post-transcriptional level. Recent stud-
ies demonstrated that post-transcriptional regulation of 
ACE2 can occur via microRNAs [39] or protein shed-
ding [40]. Single-cell sequencing analysis revealed that 
Ace2 is predominantly expressed in proximal tubules, 
whereas Tmprss2 is predominantly expressed in the distal 
nephron [41, 42]. In heart tissue, Qi et al. showed that the 
cardiomyocytes contain 6% ACE2-expressing cells and 
0.8% TMPRSS2-expressing cells [43] which might explain 
the absence of detectable cardiac Tmprss2 mRNA levels 
in our study.

Our study revealed that only the expression of renin 
was affected by a more than tenfold suppressed level in 
placebo treated 5/6 Nx rats which has previously been 

described [44]. Telmisartan normalized the Ren mRNA 
level compared to linagliptin treated 5/6 Nx rats as 
detailed recently [45]. Also, empagliflozin restored the 
renin levels in 5/6 Nx rats. In a sub‐study of a double‐
blind, randomized, placebo‐controlled, multicentre study 
(EMPA‐RESPONSE‐AHF) empagliflozin treatment was 
associated with a significant increase in plasma renin 
compared to placebo treated patients [46]. In sham kid-
neys, abundant expression of Ren mRNA was noted 
in the juxtaglomerular apparatus and not in the tubu-
lar epithelium whereas subtotal nephrectomy (STNx) 
resulted in decreased renin level based on the loss of 
renal mass. Moreover, altered distribution of renin gene 
expression was detected in the kidney of nephrecto-
mized rats resulted by de novo renin expression in renal 
tubular epithelial cells with minimal or absent expres-
sion in the juxtaglomerular apparatus [47]. In perin-
dopril-treated STNx rats, areas distant from the infarct 

Fig. 2  Renal ACE2 protein expression and cardiac TMPRSS2 protein expression in different groups. A-B Effects of high salt diet, telmisartan, 
linagliptin and empagliflozin on renal protein expression of ACE2 and cardiac protein expression of TMPRSS2. A Photomicrographs 
of immunofluorescence-stained kidneys. The red color indicates ACE2. B Renal protein expression of ACE2. C Photomicrographs of 
immunofluorescence-stained hearts. The red color indicates TMPRSS2. D Cardiac protein expression of ACE2. Magnification × 20 [scale 
bars = 100 μm]. #p < 0.05 vs. Sham + ND + PBO, *p < 0.05 vs. 5/6Nx + HSD + PBO
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scar demonstrated a pattern of renin gene transcription 
similar to that of control animals which is in line with 
our findings observed in telmisartan and empagliflozin 
treated rats.

A recently conducted comprehensive meta-analysis 
reported that RAAS-blocking drugs are not associated 
with increased risk of severe outcomes in COVID-19 
patients and may further decrease all-cause mortality in 
COVID-19 patients[1]. Furthermore, DPP4 plays a role 
in SARS-CoV-2 infection as a co-receptor, and sDPP4 
levels are upregulated in obesity and T2DM, possibly 
complicating disease outcomes, if these patients acquire 
COVID-19. DPP-4 inhibitors are currently investigated 
as a therapeutic approach preventing cardiovascular 
complications in COVID-19 due to their anti-inflamma-
tory effects at the vascular level. Several clinical studies 
are currently under investigation which use RAAS-block-
ing drugs (BRACE-CORONA (NCT04364893)), 
gliptins (SIDIACO (NCT04365517); linagliptin trials 
NCT04371978 & NCT04341935) and SGLT2 inhibitors 
(DARE-19 (NCT04350593) in COVID-19 patients.

Our study also has limitations. First, it must be shown 
that our data in a rat CKD model are transferable to 
humans. It is also important to investigate other animal 
models to verify whether our observations regarding the 
regulation of SARS CoV-2 host factors can also be found 
in other CKD animal models and thus be generalized. In 

particular, CKD animal models with diabetes would also 
be of interest.

Conclusion
Our study revealed that telmisartan, linagliptin and 
empagliflozin are not associated with a further increase 
in ACE2 and TMPRSS2 levels in kidney and heart tis-
sue under high-salt condition compared to sham control 
and normal diet-fed 5/6 nephrectomy rats. The results 
obtained in a preclinical, experimental non-diabetic kid-
ney failure model need confirmation in ongoing inter-
ventional clinical trials. Ongoing clinical trials with above 
mentioned drugs in the setting of COVID-19 will ulti-
mately clarify their potential involvement.
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