Popovich RP, Moncrief JW, Nolph KD, Ghods AJ, Twardowski ZJ, Pyle WK: Continuous ambulatory peritoneal dialysis. Ann Intern Med. 1978, 88: 449-456.
Article
CAS
PubMed
Google Scholar
Krediet RT: 30 years of peritoneal dialysis development: the past and the future. Perit Dial Int. 2007, 27 (Suppl 2): S35-S41.
PubMed
Google Scholar
Serkes KD, Blagg CR, Nolph KD, Vonesh EF, Shapiro F: Comparison of patient and technique survival in continuous ambulatory peritoneal dialysis (CAPD) and hemodialysis: a multicenter study. Perit Dial Int. 1990, 10: 15-19.
CAS
PubMed
Google Scholar
Vonesh EF, Moran J: Mortality in end-stage renal disease: a reassessment of differences between patients treated with hemodialysis and peritoneal dialysis. J Am Soc Nephrol. 1999, 10: 354-365.
CAS
PubMed
Google Scholar
Fenton SS, Schaubel DE, Desmeules M, Morrison HI, Mao Y, Copleston P, Jeffery JR, Kjellstrand CM: Hemodialysis versus peritoneal dialysis: a comparison of adjusted mortality rates [see comments]. Am J Kidney Dis. 1997, 30: 334-342. 10.1016/S0272-6386(97)90276-6.
Article
CAS
PubMed
Google Scholar
Tanna MM, Vonesh EF, Korbet SM: Patient survival among incident peritoneal dialysis and hemodialysis patients in an urban setting. Am J Kidney Dis. 2000, 36: 1175-1182. 10.1053/ajkd.2000.19832.
Article
CAS
PubMed
Google Scholar
Vonesh EF, Snyder JJ, Foley RN, Collins AJ: Mortality studies comparing peritoneal dialysis and hemodialysis: what do they tell us?. Kidney Int Suppl. 2006, S3-11. 10.1038/sj.ki.5001910.
Google Scholar
Davies SJ, Phillips L, Naish PF, Russell GI: Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. J Am Soc Nephrol. 2001, 12: 1046-1051.
CAS
PubMed
Google Scholar
Topley N: Membrane longevity in peritoneal dialysis: impact of infection and bio-incompatible solutions. Adv Ren Replace Ther. 1998, 5: 179-184.
CAS
PubMed
Google Scholar
Pecoits-Filho R, Stenvinkel P, Heimburger O, Lindholm B: Beyond the membrane--the role of new PD solutions in enhancing global biocompatibility. Kidney Int Suppl. 2003, S124-S132. 10.1046/j.1523-1755.2003.08814.x.
Google Scholar
Witowski J, Jorres A: Effects of peritoneal dialysis solutions on the peritoneal membrane: clinical consequences. Perit Dial Int. 2005, 25 (Suppl 3): S31-S34.
CAS
PubMed
Google Scholar
Topley N: In vitro biocompatibility of bicarbonate-based peritoneal dialysis solutions. Perit Dial Int. 1997, 17: 42-47.
CAS
PubMed
Google Scholar
Schambye HT: Effect of different buffers on the biocompatibility of CAPD solutions. Perit Dial Int. 1996, 16 (Suppl 1): S130-S136.
PubMed
Google Scholar
Nau B, Schmitt CP, Almeida M, Arbeiter K, Ardissino G, Bonzel KE, Edefonti A, Fischbach M, Haluany K, Misselwitz J: BIOKID: randomized controlled trial comparing bicarbonate and lactate buffer in biocompatible peritoneal dialysis solutions in children [ISRCTN81137991]. BMC Nephrol. 2004, 5: 14-10.1186/1471-2369-5-14.
Article
PubMed
PubMed Central
Google Scholar
Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, Mackenzie RK, Williams GT: Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol. 2002, 13: 470-479.
PubMed
Google Scholar
Dobbie JW, Anderson JD, Hind C: Long-term effects of peritoneal dialysis on peritoneal morphology. Perit Dial Int. 1994, 14 (Suppl 3): S16-S20.
PubMed
Google Scholar
Mortier S, Faict D, Schalkwijk CG, Lameire NH, De Vriese AS: Long-term exposure to new peritoneal dialysis solutions: Effects on the peritoneal membrane. Kidney Int. 2004, 66: 1257-1265. 10.1111/j.1523-1755.2004.00879.x.
Article
CAS
PubMed
Google Scholar
Mortier S, Faict D, Lameire NH, De Vriese AS: Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model. Kidney Int. 2005, 67: 1559-1565. 10.1111/j.1523-1755.2005.00237.x.
Article
CAS
PubMed
Google Scholar
Nakayama M, Kawaguchi Y, Yamada K, Hasegawa T, Takazoe K, Katoh N, Hayakawa H, Osaka N, Yamamoto H, Ogawa A: Immunohistochemical detection of advanced glycosylation end-products in the peritoneum and its possible pathophysiological role in CAPD. Kidney Int. 1997, 51: 182-186. 10.1038/ki.1997.22.
Article
CAS
PubMed
Google Scholar
Honda K, Nitta K, Horita S, Yumura W, Nihei H, Nagai R, Ikeda K, Horiuchi S: Accumulation of advanced glycation end products in the peritoneal vasculature of continuous ambulatory peritoneal dialysis patients with low ultra-filtration. Nephrol Dial Transplant. 1999, 14: 1541-1549. 10.1093/ndt/14.6.1541.
Article
CAS
PubMed
Google Scholar
Rippe B, Simonsen O, Heimburger O, Christensson A, Haraldsson B, Stelin G, Weiss L, Nielsen FD, Bro S, Friedberg M: Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. Kidney Int. 2001, 59: 348-357. 10.1046/j.1523-1755.2001.00497.x.
Article
CAS
PubMed
Google Scholar
Williams JD, Topley N, Craig KJ, Mackenzie RK, Pischetsrieder M, Lage C, Passlick-Deetjen J: The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int. 2004, 66: 408-418. 10.1111/j.1523-1755.2004.00747.x.
Article
PubMed
Google Scholar
Lee HY, Park HC, Seo BJ, Do JY, Yun SR, Song HY, Kim YH, Kim YL, Kim DJ, Kim YS: Superior patient survival for continuous ambulatory peritoneal dialysis patients treated with a peritoneal dialysis fluid with neutral pH and low glucose degradation product concentration (Balance). Perit Dial Int. 2005, 25: 248-255.
PubMed
Google Scholar
Lee HY, Choi HY, Park HC, Seo BJ, Do JY, Yun SR, Song HY, Kim YH, Kim YL, Kim DJ: Changing prescribing practice in CAPD patients in Korea: increased utilization of low GDP solutions improves patient outcome. Nephrol Dial Transplant. 2006, 21: 2893-2899. 10.1093/ndt/gfl393.
Article
CAS
PubMed
Google Scholar
Johnson DW, Williams JD: Impact of peritoneal dialysis solutions on outcomes. Evidence-based nephrology. Edited by: Molony DA, Craig JC. 2009, Oxford, UK: Blackwell
Google Scholar
Termorshuizen F, Korevaar JC, Dekker FW, Van Manen JG, Boeschoten EW, Krediet RT: The relative importance of residual renal function compared with peritoneal clearance for patient survival and quality of life: an analysis of the Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD)-2. Am J Kidney Dis. 2003, 41: 1293-1302. 10.1016/S0272-6386(03)00362-7.
Article
PubMed
Google Scholar
Bargman JM, Thorpe KE, Churchill DN: Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J Am Soc Nephrol. 2001, 12: 2158-2162.
CAS
PubMed
Google Scholar
Rumpsfeld M, McDonald SP, Johnson DW: Peritoneal small solute clearance is nonlinearly related to patient survival in the Australian and New Zealand peritoneal dialysis patient populations. Perit Dial Int. 2009, 29: 637-646.
PubMed
Google Scholar
Fan SL, Pile T, Punzalan S, Raftery MJ, Yaqoob MM: Randomized controlled study of biocompatible peritoneal dialysis solutions: effect on residual renal function. Kidney Int. 2008, 73: 200-206. 10.1038/sj.ki.5002574.
Article
CAS
PubMed
Google Scholar
Szeto CC, Chow KM, Lam CW, Leung CB, Kwan BC, Chung KY, Law MC, Li PK: Clinical biocompatibility of a neutral peritoneal dialysis solution with minimal glucose-degradation products--a 1-year randomized control trial. Nephrol Dial Transplant. 2007, 22: 552-559. 10.1093/ndt/gfl559.
Article
CAS
PubMed
Google Scholar
Kim S, Oh J, Kim S, Chung W, Ahn C, Kim SG, Oh KH: Benefits of biocompatible PD fluid for preservation of residual renal function in incident CAPD patients: a 1-year study. Nephrol Dial Transplant. 2009, 24: 2899-2908. 10.1093/ndt/gfp054.
Article
PubMed
Google Scholar
van Olden RW, Krediet RT, Struijk DG, Arisz L: Measurement of residual renal function in patients treated with continuous ambulatory peritoneal dialysis. J Am Soc Nephrol. 1996, 7: 745-750.
CAS
PubMed
Google Scholar
Wiggins KJ, Strippoli GF, Craig JC, Johnson DW: Biocompatible dialysis fluids for peritoneal dialysis. Cochrane Database Syst Rev. 2009, CD007554-
Google Scholar