Hoste EA, Schurgers M: Epidemiology of acute kidney injury: how big is the problem?. Crit Care Med. 2008, 36: S146-S151. 10.1097/CCM.0b013e318168c590.
Article
PubMed
Google Scholar
Milhoan KA, Lane TA, Bloor CM: Hypoxia induces endothelial cells to increase their adherence for neutrophils: role of PAF. Am J Physiol. 1992, 263: H956-H962.
CAS
PubMed
Google Scholar
Lucchesi BR: Role of neutrophils in ischemic heart disease: pathophysiologic role in myocardial ischemia and coronary artery reperfusion. Cardiovasc Clin. 1987, 18: 35-48.
CAS
PubMed
Google Scholar
Goldman G, Welbourn R, Klausner JM, Valeri CR, Shepro D, Hechtman HB: Thromboxane mediates diapedesis after ischemia by activation of neutrophil adhesion receptors interacting with basally expressed intercellular adhesion molecule-1. Circ Res. 1991, 68: 1013-1019.
Article
CAS
PubMed
Google Scholar
Jerome SN, Dore M, Paulson JC, Smith CW, Korthuis RJ: P-selectin and ICAM-1-dependent adherence reactions: role in the genesis of postischemic no-reflow. Am J Physiol. 1994, 266: H1316-H1321.
CAS
PubMed
Google Scholar
Paterson IS, Klausner JM, Goldman G, Kobzik L, Welbourn R, Valeri CR, et al: Thromboxane mediates the ischemia -induced neutrophil oxidative burst. Surgery. 1989, 106: 224-229.
CAS
PubMed
Google Scholar
Lucchesi BR: Myocardial ischemia, reperfusion, and free radical injury. Am J Cardiol. 1990, 65: 141-231.
Article
Google Scholar
Bonventre JV, Zuk A: Ischemic acute renal failure: an inflammatory disease?. Kidney Int. 2004, 66: 480-485. 10.1111/j.1523-1755.2004.761_2.x.
Article
CAS
PubMed
Google Scholar
Takada M, Nadeau KC, Shaw GD, Marquette KA, Tilney NL: The cytokine-adhesion molecule cascade in ischemia/reperfusion injury of the rat kidney. Inhibition by a soluble P-selectin ligand. J Clin Invest. 1997, 99: 2682-2690. 10.1172/JCI119457.
Article
CAS
PubMed
PubMed Central
Google Scholar
Donnahoo KK, Meng X, Ayala A, Cain MP, Harken AH, Meldrum DR: Early kidney TNF-alpha expression mediates neutrophil infiltration and injury after renal ischemia-reperfusion. Am J Physiol. 1999, 277: R922-R929.
CAS
PubMed
Google Scholar
Daemen MA, van't Veer C, Wolfs TG, Buurman WA: Ischemia/reperfusion-induced IFN-gamma up-regulation: Involvement of IL-12 and IL-18. J Immunol. 1999, 162: 5506-5510.
CAS
PubMed
Google Scholar
Kofler J, Yokota N, Weisfeldt M, Traystman RJ, Rabb H: Acute renal failure after whole body ischemia is characterized by inflammation and T cell mediated injury. Am J Physiol: Renal Physiol. 2003, 285: F87-F94.
Google Scholar
Donnahoo KK, Meldrum DR, Shenkar R, Chung C, Abraham E, Harken AH: Early renal ischemia, with or without reperfusion, activates NFκB and increases TNF-α bioactivity in the kidney. J Urol. 2000, 163: 1328-1332. 10.1016/S0022-5347(05)67772-5.
Article
CAS
PubMed
Google Scholar
Donnahoo KK, Shames BD, Harken AH, Meldrum DR: Role of tumor necrosis factor in renal ischemia and reperfusion injury (Review). J Urol. 1999, 162: 196-203. 10.1097/00005392-199907000-00068.
Article
CAS
PubMed
Google Scholar
Sanders DB, Larson DF, Hunter K, Gorman M, Yang B: Comparison of tumor necrosis factor-alpha effect on the expression of iNOS in macro and cardiac myocytes. Perfusion. 2001, 16: 67-74. 10.1177/026765910101600i110.
Article
CAS
PubMed
Google Scholar
Morrissey JJ, McCracken R, Kaneto H, Yang B, Montani D, Klahr S: Location of an inducible nitric oxide synthase mRNA in the normal kidney. Kidney Int. 1994, 45: 998-1005. 10.1038/ki.1994.135.
Article
CAS
PubMed
Google Scholar
Chatterjee PK, Patel NSA, Kvale EO: Inhibition of inducibile nitric oxide synthase reduces renal ischemia/reperfusion injury. Kidney Int. 2002, 61: 862-871. 10.1046/j.1523-1755.2002.00234.x.
Article
CAS
PubMed
Google Scholar
Hill-Kapturczak N, Kapturczak MH, Malinski T, Gross P: Nitric oxide and nitric oxide synthase in the kidney: Potential roles in normal renal function and in renal dysfunction. Endothelium. 1995, 3: 253-299. 10.3109/10623329509024671.
Article
CAS
Google Scholar
Rabb H, O'Meara YM, Maderna P, Coleman P, Brady HR: Leukocytes, cell adhesion molecules and ischemic acute renal failure. Kidney Int. 1997, 51: 1463-1468. 10.1038/ki.1997.200.
Article
CAS
PubMed
Google Scholar
Dahlen SE, Bjork J, Hedqvist P, Arfors KE, Hammarstrom S, Lindgren JA, et al: Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: in vivo effects with relevance to the acute inflammatory response. Proc Natl Acad Sci USA. 1981, 78: 3887-3891. 10.1073/pnas.78.6.3887.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noiri E, Yokomizo T, Nakao A, Izumi T, Fujita T, Kimura S, et al: An in vivo approach showing the chemotactic activity of leukotriene B4 in acute renal ischemic-reperfusion injury. Proc Natl Acad Sci USA. 2000, 97: 823-828. 10.1073/pnas.97.2.823.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rao PS, Cohen MV, Mueller HS: Production of free radicals and lipid peroxides in early experimental myocardial ischemia. J Mol Cell Cardiol. 1983, 15: 713-716. 10.1016/0022-2828(83)90260-2.
Article
CAS
PubMed
Google Scholar
Sevanian A, Kim E: Phospholipase A2 dependent release of fatty acids from peroxidized membranes. J Free Radic Biol Med. 1985, 1: 263-271. 10.1016/0748-5514(85)90130-8.
Article
CAS
PubMed
Google Scholar
Ford-Hutchinson AW: FLAP: a novel drug target for inhibiting the synthesis of leukotrienes. Trends Pharmacol Sci. 1991, 12: 68-70.
Article
CAS
PubMed
Google Scholar
Depre M, Friedman B, Tanaka W, Van Hecken A, Buntinx A, DeSchepper PJ: Biochemical activity, pharmacokinetics, and tolerability of MK-886, a leukotriene biosynthesisinhibitor, in humans. Clin Pharmacol Ther. 1993, 53: 602-607. 10.1038/clpt.1993.76.
Article
CAS
PubMed
Google Scholar
Brideau C, Chan C, Charleson S, et al: Pharmacology of MK-0591 (3-[l-(4-chlorobenzyl)-3-(t-butylthio)-5-(quinolin-2-yl-methoxy)-indol-2-yl]-2, 2-dimethylpropanoic acid), a potent, orally active leukotriene biosynthesis inhibitor. Can J Physiol Pharmacol. 1992, 70: 799-807. 10.1139/y92-107.
Article
CAS
PubMed
Google Scholar
Daglar G, Karaca T, Yuksek YN, Gozalan U, Akbiyik F, Sokmensuer C, et al: Effect of Montelukast and MK-886 on Hepatic Ischemia-Reperfusion Injury in Rats. Journal of surgical research. 2009, 153 (1): 31-38. 10.1016/j.jss.2008.02.052.
Article
CAS
PubMed
Google Scholar
Şener G, Şehirli Ö, Velioğlu-Öğünç A, Çetinel S, Gedik N, Caner M, Sakarcan A, et al: Montelukast protects against renal ischemia/reperfusion injury in rats. Pharm Rese. 2006, 54 (1): 65-71. 10.1016/j.phrs.2006.02.007.
Article
Google Scholar
Pantos C, Malliopoulou V, Varonos D, Cokkinos DV: Thyroid hormone and phenotypes of cardioprotection. Basic Res Cardiol. 2004, 99: 101-120. 10.1007/s00395-003-0449-0.
Article
CAS
PubMed
Google Scholar
Klemperer JD, Zelano J, Helm RE, Berman K, Ojamaa K, Klein I, et al: Triiodothyronine improves left ventricular function without oxygen wasting effects after global hypothermic ischaemia. J Thorac Cardiovasc Surg. 1995, 109 (3): 457-465. 10.1016/S0022-5223(95)70276-8.
Article
CAS
PubMed
Google Scholar
Liu Q, Clanachan AS, Lopaschuk GD: Acute effects of triiodothyronine on glucose and fatty acid metabolism during reperfusion of ischaemic rat hearts. Am J Physiol. 1998, 275 (3): E392-E399.
CAS
PubMed
Google Scholar
Buser PT, Wikman-Coffelt J, Wu ST, Derugin N, Parmley WW, Higgins CB: Postischaemic recovery of mechanical performance and energy metabolism in the presence of left ventricular hypertrophy: a 31P-MRS study. Circ Res. 1990, 66 (3): 735-746.
Article
CAS
PubMed
Google Scholar
Pantos C, Malliopoulou V, Mourouzis I, Karamanoli E, Paizis I, Steimberg N, et al: Long-term thyroxine administration protects the heart in a similar pattern as ischaemic preconditioning. Thyroid. 2002, 12: 325-329. 10.1089/10507250252949469.
Article
CAS
PubMed
Google Scholar
Pantos C, Mourouzis I, Cokkinos DV: Myocardial ischemia-basic concepts, stress signalling in myocardial ischemia. Edited by: Cokkinos DV, Pantos C, Heusch G, Taegtmeyer H. 2006, Myocardial Ischemia; from Mechanisms to Therapeutic Potentials, Springer, New York, NY 10013, USA, 29-52.
Google Scholar
Morkin E, Ladenson P, Goldman S, Adamson C: Thyroid hormone analogs for treatment of hypercholesterolemia and heart failure: past, present and future prospects. J Mol Cell Cardiol. 2004, 37: 1137-1146.
CAS
PubMed
Google Scholar
Mousa SA, O'Connor L, Davis FB, Davis PJ: Proangiogenesis action of the thyroid hormone analog 3, 5-diiodothyropropionic acid (DITPA) is initiated at the cell surface and is integrin mediated. Endocrinology. 2006, 147: 1602-1607.
Article
CAS
PubMed
Google Scholar
Morkin E, Pennock GD, Spooner PH, Bahl JJ, Goldman S: Clinical and experimental studies on the use of 3, 5-diiodothyropropionic acid, a thyroid hormone analogue, in heart failure. Thyroid. 2002, 12 (6): 527-533. 10.1089/105072502760143935.
Article
CAS
PubMed
Google Scholar
Pennock GD, Spooner PH, Summers CE, Litwin SE: Prevention of Abnormal Sarcoplasmic Reticulum Calcium Transport and Protein Expression in Post-infarction Heart Failure Using 3, 5-Diiodothyropropionic Acid (DITPA). 2000, 32 (11): 1939-1953.
Google Scholar
Eun JC, Moore EE, Mauchley DC, Meng X, Banerjee A: The 5-Lipoxygenase Pathway Meditates Acute Lung Injury Following Hemorrhagic Shock. Journal of Surgical Research. 2010, 158 (2): 215-216.
Article
Google Scholar
Niranjan M, Cynthia A, Kevin G, Scott K, James H, Joseph JB: Regulation of Gene Expression in Rats With Heart Failure Treated With the Thyroid Hormone Analog 3, 5-Diiodothyropropionic Acid (DITPA) and the Combination of DITPA and Captopril. Journal of cardiovascularPharmacology. 2007, 50 (5): 526-534.
Google Scholar
Feitoza CQ, Gonçalves GM, Semedo P, Cenedeze MA, Pinheiro H, Beraldo FC: Inhibition of COX 1 and 2 prior to Renal Ischemia/Reperfusion Injury Decreases the Development of Fibrosis. mol med. 2008, 14 (11-12): 724-730.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharyo S, Kumagai K, Yokota-Ikeda N, Ito K, Ikeda M: Amelioration of Renal Ischemia-Reperfusion Injury by Inhibitionof IL-6 Production in the Poloxamer 407-Induced Mouse Modelof Hyperlipidemia. J Pharmacol Sci. 2009, 110: 47-54. 10.1254/jphs.08283FP.
Article
CAS
PubMed
Google Scholar
Köken T, Serteser M, Kahraman A, Akbulut G, Dilek ON: Which is more effective in the prevention of renal ischemia-reperfusion-induced oxidative injury in the early period in mice: interleukin (IL)-10 or anti-IL-12?. Clin Biochem. 2004, 37 (1): 50-55. 10.1016/j.clinbiochem.2003.10.001.
Article
PubMed
Google Scholar
Beuge JA, Aust SD: Microsomal lipid peroxidation. Meth Enzymol. 1978, 52: 302-311.
Article
Google Scholar
Asaga T, Ueki M, Chujo K, Taie S: JTE-607, an Inflammatory Cytokine Synthesis Inhibitor, Attenuates Ischemia/Reperfusion-Induced Renal Injury by Reducing Neutrophil Activation in Rats. J Bio sci Bio eng. 2008, 106 (1): 22-26.
CAS
Google Scholar
Fukatsu A, Matsuo S, Yuzawa Y, Miyai H, Futenma A, Kato K: Expression of interleukin 6 and major histocompatibility complex molecules in tubular epithelial cells of diseased human kidneys. Lab Investig. 1993, 69: 58-67.
CAS
PubMed
Google Scholar
Gracie JA, Robertson SE, McInnes IB: Interleukin-18. J Leukoc Biol. 2003, 73: 213-224. 10.1189/jlb.0602313.
Article
CAS
PubMed
Google Scholar
Popa C, Netea MG: The role of TNF-α in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res. 2007, 48: 751-762. 10.1194/jlr.R600021-JLR200.
Article
CAS
PubMed
Google Scholar
De Greef KE, Ysebaert DK, Ghielli M, Vercauteren S, Nouwen EJ, Eyskens EJ, et al: Neutrophils and acute ischemia-reperfusion injury. J Nephrol. 1998, 11: 110-122.
CAS
PubMed
Google Scholar
Kielar ML, John R, Bennett M, Richardson JA, Shelton JM, Chen L, et al: Maladaptive Role of IL-6 in Ischemic Acute Renal Failure. J Am Soc Nephrol. 2005, 16: 3315-3325. 10.1681/ASN.2003090757.
Article
CAS
PubMed
Google Scholar
Mejía-Vilet JM, Ramírez V, Cruz C, Uribe N, Gamba G, Bobadilla NA: Renal ischemia-reperfusion injury is prevented by the mineralocorticoid receptor blocker spironolactone. Am J Physiol Renal Physiol. 2007, 293: F 78-F86.
Article
Google Scholar
Seok YM, Kima J, Choi KC, Yoon CH, Boob YC, Park Y, et al: Wen-pi-tang-Hab-Wu-ling-san attenuates kidneyischemia/reperfusion injury in mice A role for antioxidant enzymes and heat-shock proteins. Journal of Ethnopharmacology. 2007, 112: 333-340. 10.1016/j.jep.2007.03.015.
Article
PubMed
Google Scholar
Fransen C, Defraigne JO, Detry O, Pincemail J, Deby C, Lamy M: Antioxidant defense and free radical production in a rabbit model of kidney ischemia reperfusion. Transplant Proc. 1995, 27: 2880-2883.
Google Scholar
Ferreira R, Llesuy S, Milei J, Scordo D, Hourquebie H, Molteni L, et al: Assessment of myocardial oxidative stress in patients after myocardial revascularization. Am Heart J. 1988, 115: 307-312. 10.1016/0002-8703(88)90475-9. 231
Article
CAS
PubMed
Google Scholar
Kose K, Yazici C, & Assioglu O: The evaluation of lipid peroxidation and adensine Deaminase activity in patient with Behcehs disease. Clin Bio Chem. 2001, 34 (2): 125-9.
CAS
Google Scholar
Meister A, Anderson M: Glutathion. Annu Rev Biol Chem. 1988, 52: 711-60.
Google Scholar
Möller E, McIntosh JF, Van Slyke DD: Studies of urea excretion. II. Relationship between urine volume and the rate of urea excretion by normal adults. J Clin Invest. 1929, 6: 427-
Article
Google Scholar
Lieberthal W, Koh JS, Levine JS: Necrosis and apoptosis in acute renal failure. Semin Nephrol. 1998, 18: 505-518.
CAS
PubMed
Google Scholar
Ford-Hutchinson AW: Activation of the 5-lipoxygenase pathway of arachidonic acid metabolism. Edited by: Chung KF, Barnes PJ. 1993, Pharmacology of the Respiratory Tract:Experimental and clinical Research. New York, USA.Marcel Dekker, 375-414.
Google Scholar
Poubelle PE, Stankova J, Grassi J, Rola-Pleszczynski M: Leukotriene B4 up-regulates IL-6 rather than IL-1 synthesis in human monocytes. inflamm resea. 1993, 34 (1-2): 42-45.
Google Scholar
Rola-Pleszczynski M, Stankova J: Leukotriene B4 enhances interleukin-6 (IL-6) production and IL-6 messenger RNA accumulation in human monocytes in vitro: transcriptional and posttranscriptional mechanisms. Blood. 1992, 80 (4): 1004-11.
CAS
PubMed
Google Scholar
Mantovani A: The interplay between primary and secondary cytokines: cytokines involved in the regulation of monocyte recruitment. Drugs. 1997, 54 (Suppl 1): 15-23.
Article
CAS
PubMed
Google Scholar
Cannetti CA, Leung BP, Culshaw S, McInnes IB, Cunha FQ, Liew FY: IL-18 Enhances Collagen-Induced Arthritis by Recruiting Neutrophils Via TNF-α and Leukotriene B4. J Immunol. 2003, 171: 1009-1015.
Article
CAS
PubMed
Google Scholar
Leonard MO, Hannan K, Burne MJ, Lappin DW, Doran P, Coleman P, et al: 15-epi-16-(para-Fluorophenoxy)-lipoxin A4-methyl ester, a synthetic analogue of 15-epi-lipoxin A4, is protective in experimental ischemic acute renal failure. J Am Soc Nephrol. 2002, 13: 1657-1662. 10.1097/01.ASN.0000015795.74094.91.
Article
CAS
PubMed
Google Scholar
Chatterjee PK, Zacharowski K, Cuzzocrea S, Otto M, Thiemermann C: Inhibitors of poly (ADP-ribose) synthetase reduce renal ischemia-reperfusion injury in the anesthetized rat in vivo. FASEB J. 2000, 14: 641-651.
CAS
PubMed
Google Scholar
Davis PJ, Davis FB, Cody V: Membrane receptors mediating thyroid hormone action. Trends Endocrinol Metab. 2005, 16: 429-435. 10.1016/j.tem.2005.09.007.
Article
CAS
PubMed
Google Scholar
Fernández V, Castillo I, Tapia G, Romanque P, Uribe-Echevarría S, Uribe M, et al: Thyroid hormone preconditioning: protection against ischemia-reperfusion liver injury in the rat. Hepatology. 2007, 45 (1): 170-7. 10.1002/hep.21476.
Article
PubMed
Google Scholar
Li F, Lu S, Zhu R, Zhou Z, Ma L, Cai L, et al: Heme oxygenase-1 is induced by Thyroid hormone and involved in thyroid hormone preconditioning-induced protection against renal warm ischemia in rat. Mol Cell Endocrinol (). 2011, PMID 21458530
Google Scholar