Athuraliya TN, Abeysekera DT, Amerasinghe PH, Kumarasiri PV, Dissanayake V. Prevalence of chronic kidney disease in two tertiary care hospitals: high proportion of cases with uncertain aetiology. Ceylon Med J. 2009;54(1).23-25.
Ranasinghe AV, Kumara GW, Karunarathna RH, De Silva AP, Sachintani KG, Gunawardena JM, Kumari SK, Sarjana MS, Chandraguptha JS, De Silva MV. The incidence, prevalence and trends of chronic kidney disease and chronic kidney disease of uncertain aetiology (CKDu) in the north Central Province of Sri Lanka: an analysis of 30,566 patients. BMC Nephrol. 2019;20(1):338.
Article
Google Scholar
Elledge MF, Redmon JH, Levine L, Wickremasinghe R, Waniyasuriya K, Joun R. ChronicKidney disease of unknown etiology: quest for understanding and global publication: RTI Press Publication No. RB-0007-1405. Research Triangle Park; 2014.
Jayasekara KB, Dissanayake DM, Sivakanesan R, Ranasinghe A, Karunarathna RH, Kumara GW. Epidemiology of chronic kidney disease, with special emphasis on chronic kidney disease of uncertain etiology, in the north central region of Sri Lanka. J Epidemiol. 2015;25(4):275–80.
Article
Google Scholar
Jayasumana C, Paranagama P, Agampodi S, Wijewardane C, Gunatilake S, Siribaddana S. Drinking well water and occupational exposure to herbicide is associated with chronic kidney disease – inPadavi- Sripura, Sri Lanka. Environ Health. 2015;14(6):6.
Article
Google Scholar
Jayatilake N, Mendis S, Maheepala P, Mehta FR. Chronic kidney disease of uncertain aetiology: prevalence and causative factors in a developing country. BMC Nephrol. 2013;14(1):180.
Article
Google Scholar
Illeperuma OA, Dharmagunawardhane HA, Herarh KPRP. Dissolution of aluminium from substandard utensils under high fluoride stress: A possible risk factors for chronic renal failure in the North-Central-Province. Natl Sci Found. 2009;37:219–22.
Google Scholar
Nanayakkara S, Stmld S, Abeysekera T, Chandrajith R, Ratnatunga N, Edl G, Yan J, Hitomi T, Muso E, Komiya T, Harada KH. An integrative study of the genetic, social and environmental determinants of chronic kidney disease characterized by tubulointerstitial damages in the north central region of Sri Lanka. J Occup Health. 2014;56(1):28-38.
Balasooriya S, Munasinghe H, Herath AT, Diyabalanage S, Ileperuma OA, Manthrithilake H, Daniel C, Amann K, Zwiener C, Barth JA, Chandrajith R. Possible links between groundwater geochemistry and chronic kidney disease of unknown etiology (CKDu): an investigation from the Ginnoruwa region in Sri Lanka. Exposure Health. 2019;17:1–2.
Google Scholar
Koizumi A, Kobayashi H, Harada KH, Ratnatunga N, Parahitiyawa NB, Chandrajith R, Senevirathna STMLD, Nanayakkara S, Abeysekera T, Hitomi T. Whole-exome sequencing reveals genetic variants associated with chronic kidney disease characterized by tubulointerstitial damages in north central region, Sri Lanka. Environ Health Prev Med. 2015;20(5):354.
Article
Google Scholar
Sayanthooran S, Magana-Arachchi DN, Gunerathne L, Abeysekera T. Potential diagnostic biomarkers for chronic kidney disease of unknown etiology (CKDu) in Sri Lanka: a pilot study. BMC Nephrol. 2017;18(1):31.
Article
Google Scholar
Wickramarathna S, Balasooriya S, Diyabalanage S, Chandrajith R. Tracing environmental aetiological factors of chronic kidney diseases in the dry zone of Sri Lanka—a hydrogeochemical and isotope approach. J Trace Elem Med Biol. 2017;44:298–306.
Article
Google Scholar
Dissanayake CB, Chandrajith R. Fluoride and hardness in groundwater of tropical regions-review of recent evidence indicating tissue calcification and calcium phosphate nanoparticle formation in kidney tubules. Ceylon J Sci. 2019;48(3):197–207.
Article
Google Scholar
Dissanayake CB. Water quality in the dry zone of Sri Lanka-some interesting health aspects. J Natl Sci Found Sri Lanka. 2010;33(3):161-8.
WHO. Hardness in Drinking water, Document for Development of WHO Guidelines for Drinkingwater quality. The World Health Organization, Geneva, Switzerland; 2011.
Wasana HM, Aluthpatabendi D, Kularatne WM, Wijekoon P, Weerasooriya R, Bandara J. Drinking water quality and chronic kidney disease of unknown etiology (CKDu): synergic effects of fluoride, cadmium and hardness of water. Environ Geochem Health. 2016;38(1):157–68.
Article
CAS
Google Scholar
Jayasumana C, Paranagama PA, Amarasinghe MD, Wijewardane KMRC, Dahanayake KS, Fonseka SI, Rajakaruna KDLMP, Mahamithawa AMP, Senanayake VK SUD. Possible link of chronic arsenic toxicity with chronic kidney disease of unknown etiology in Sri Lanka. J Nat Sci Res. 2013;3(1):64–73.
Google Scholar
Dissanayake DM, Jayasekera JM, Ratnayake P, Wickramasinghe P, Radella YA, Shihana F. Short term effects of crude extracts of cyanobactria blooms of reservoirs in high prevalence area for CKD in Sri Lanka on mice. In:kidney proceeding. Sri Lanka: University of Peradeniya; 2011.
Google Scholar
WHO & NSF. Designing a step wise approach to estimate the burden and to understand the etiology of CKDu in Sri Lanka. In: Workshop report. Sri Lanka; 2016.
Kafle K, Balasubramanya S, Horbulyk T. Prevalence of chronic kidney disease in Sri Lanka: a profile of affected districts reliant on groundwater. Sci Total Environ. 2019 Dec 1;694:133767.
Article
CAS
Google Scholar
Wanigasuriya KP, Peiris H, Heperuma N, Peiris RB, Wickremasinghe R. Could ochratoxinin food commodities be the cause of chronic kidney disease in Sri Lanka? Tranesactions R Soc Trop Med Hyg. 2008;102:726–8.
Article
Google Scholar
Noble A, Amerasinghe P, Manthrithilake H, Arasalingam S. Review of literature on chronic kidney disease of unknown etiology (CKDu) in Sri Lanka: IWMI, International Water Management Institute, Battaramulla, Sri Lanka; 2014.
Paranagama PA. Potential link between ground water hardness, arsenic content and prevalence of CKDu. InProceedings of the Symposium on “Chronic kidney disease of uncertain origin (CKDu): A scientific basis for future action; 2013. p. 1-8.
Wasana HMS, Perera GDRK, Gunawardena PSD, Bandara J. The impact of aluminum,fluoride, and aluminum–fluoride complexes in drinking water on chronic kidney disease. Environ Sci Pollut Res. 2015;22(14):11001–9.
Article
CAS
Google Scholar
Aqeelah Faleel R, Jayawardena U. Is it safe to drink water in Mihintale?; A case study from disease endemic areas of the Chronic Kidney Disease of unknown aetiology (CKDu). In: 17th Annual Research Sessions of the Open University of Sri Lanka; 2019.
Google Scholar
Cooray T, Wei Y, Zhong H, Zheng L, Weragoda SK, Weerasooriya AR. Assessment of groundwaterquality in CKDuaffectedareas of Sri Lanka: implications for drinkingwatertreatment. Int J Environ Res Public Health. 2019;16(10):1698.
Article
CAS
Google Scholar
Chandrajith R, Diyabalanage S, Dissanayake CB. Geogenic fluoride and arsenic in groundwater of Sri Lanka and its implications to community health. Groundw Sustain Dev. 2020;10:100359.
Bandara UG, Diyabalanage S, Hanke C, van Geldern R, Barth JA, Chandrajith R. Arsenic-rich shallow groundwater in sandy aquifer systems buffered by rising carbonate waters: a geochemical case study from Mannar Island, Sri Lanka. Sci Total Environ. 2018;633:1352–9.
Article
CAS
Google Scholar
Amarathunga U, Diyabalanage S, Bandara UG, Chandrajith R. Environmental factors controlling arsenic mobilization from sandy shallow coastal aquifer sediments in the Mannar Island, Sri Lanka. Appl Geochem. 2019 Jan 1;100:152–9.
Article
CAS
Google Scholar
Siriwardhana ER, Perera PA, Sivakanesan R, Abeysekara T, Nugegoda DB, Weerakoon KG. Is the staple diet eaten in Medawachchiya, Sri Lanka, a predisposing factor in the development of chronic kidney disease of unknown etiology?-a comparison based on urinary β 2-microglobulin measurements. BMC Nephrol. 2014;15(1):103.
Article
Google Scholar
Mirmiran P, Bahadoran Z, Golzarand M, Asghari G, Azizi F. Consumption of nitrate containing vegetables and the risk of chronic kidney disease: Tehran lipid and glucose study. Ren Fail. 2016;38(6):937–44.
Article
CAS
Google Scholar
Silva CS. Water quality assessment in Jaffna, Vavuniya, Anuradhapura, Kurunagala and Hambantota in Sri Lanka for domestic purposes. Proceedings of the Annual Academic Sessions of the Open University of Sri Lanka; 2010.
Jayasinghe YK. CHRONIC KIDNEY DISEASE. Risk factor identification. Secondary data analysis. In: IWMI reports; 2011.
Google Scholar
Wijerathne C, Weragoda SK, Kawakami T. A reviewof Chronic Kidney Disease Due to Unknown Etiology and Groundwater Quality in Dryzone, Sri Lanka. In: International Conference on Advances in Advances in Applied Science and Environmental Engineering (ASEE), Malaysia, Organized by Institute of Research Engineers and Doctors, USA; 2014.
Eddington H, Hoefield R, Sinha S, Chrysochou C, Lane B, Foley RN, Hegarty J, New J, O’Donoghue DJ, Middleton RJ, Kalra PA. Serum phosphate and mortality in patient with chronic kidney disease. Clin J Am Soc Nephrol. 2010;5(12):2251–7.
Article
Google Scholar
Jayasumana C, Gunatilake S, Senanayake P. Glyphosate, hardwater and nephrotoxic metals:are they the culprits behind the epidemic of chronic kidney disease of unknown etiology in Sri Lanka?Int J environ res. Public Health. 2014;11(2):2125–47.
Google Scholar
Parangama A, Jayasuriya N, Bhuiyan MA. Water quality parameters in relation to ChronicKidney Disease in Sri Lanka. In: Jayasinghe, Mendis, Fernando S, Janaka Y, Ranjith Dissanayake R, editors. Capacity Building for Sustainability MTR. Kandy: University of Peradeniya; 2013. p. 173–83.
Google Scholar