Churchill DN, Thorpe KE, Nolph KD, Keshaviah PR, Oreopoulos DG, Pagé D. Increased peritoneal membrane transport is associated with decreased patient and technique survival for continuous peritoneal dialysis patients. The Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J Am Soc Nephrol. 1998;9:1285–92. https://doi.org/10.1681/ASN.V971285.
Article
CAS
PubMed
Google Scholar
Davies SJ, Phillips L, Griffiths AM, Russell LH, Naish PF, Russell GI. Impact of peritoneal membrane function on long-term clinical outcome in peritoneal dialysis patients. Perit Dial Int. 1999;19(Suppl 2):91–4.
Article
Google Scholar
Rumpsfeld M, McDonald SP, Johnson DW. Higher peritoneal transport status is associated with higher mortality and technique failure in the Australian and New Zealand peritoneal dialysis patient populations. J Am Soc Nephrol. 2006;17:271–8. https://doi.org/10.1681/ASN.2005050566.
Article
PubMed
Google Scholar
Chung SH, Heimbürger O, Lindholm B. Poor outcomes for fast transporters on PD: the rise and fall of a clinical concern. Semin Dial. 2008;21:7–10. https://doi.org/10.1111/j.1525-139X.2007.00327.x.
Article
PubMed
Google Scholar
Rumpsfeld M, McDonald SP, Purdie DM, Collins J, Johnson DW. Predictors of baseline peritoneal transport status in Australian and New Zealand peritoneal dialysis patients. Am J Kidney Dis. 2004;43:492–501. https://doi.org/10.1053/j.ajkd.2003.11.010.
Article
PubMed
Google Scholar
Lambie M, Chess J, Donovan KL, Kim YL, Do JY, Lee HB, et al. Independent effects of systemic and peritoneal inflammation on peritoneal dialysis survival. J Am Soc Nephrol. 2013;24:2071–80. https://doi.org/10.1681/ASN.2013030314.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pecoits-Filho R, Carvalho MJ, Stenvinkel P, Lindholm B, Heimbürger O. Systemic and intraperitoneal interleukin-6 system during the first year of peritoneal dialysis. Perit Dial Int. 2006;26:53–63.
Article
CAS
PubMed
Google Scholar
Yang X, Zhang H, Hang Y, Yan H, Lin A, Huang J, et al. Intraperitoneal interleukin-6 levels predict peritoneal solute transport rate: a prospective cohort study. Am J Nephrol. 2014;39:459–65. https://doi.org/10.1159/000362622.
Article
CAS
PubMed
Google Scholar
Gillerot G, Goffin E, Michel C, Evenepoel P, Biesen WV, Tintillier M, et al. Genetic and clinical factors influence the baseline permeability of the peritoneal membrane. Kidney Int. 2005;67:2477–87. https://doi.org/10.1111/j.1523-1755.2005.00357.x.
Article
PubMed
Google Scholar
Hwang YH, Son MJ, Yang J, Kim K, Chung W, Joo KW, et al. Effects of interleukin-6 T15A single nucleotide polymorphism on baseline peritoneal solute transport rate in incident peritoneal dialysis patients. Perit Dial Int. 2009;29:81–8.
Article
CAS
PubMed
Google Scholar
Teng L, Chang M, Liu S, Niu M, Zhang Y, Liu X, et al. Peritoneal microvascular endothelial function and the microinflammatory state are associated with baseline peritoneal transport characteristics in uremic patients. Int Urol Nephrol. 2015;47:191–9. https://doi.org/10.1007/s11255-014-0775-1.
Article
CAS
PubMed
Google Scholar
Zhang AH, Wang G, Zhang DL, Zhang QD, Liu S, Liao Y, et al. Association between VEGF receptors and baseline peritoneal transport status in new peritoneal dialysis patients. Ren Fail. 2012;34:582–9. https://doi.org/10.1007/s00018-005-5426-3.
Article
CAS
PubMed
Google Scholar
Cébe-Suarez S, Zehnder-Fjällman A, Ballmer-Hofer K. The role of VEGF receptors in angiogenesis; complex partnerships. Cell Mol Life Sci. 2006;63:601–15. https://doi.org/10.1016/j.gene.2017.07.027.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu B, Wei J, Li M, Jiang J, Zhang H, Yang L, et al. Association of common genetic variants in VEGFA with biliary atresia susceptibility in Northwestern Han Chinese. Gene. 2017;628:87–92. https://doi.org/10.22034/APJCP.2017.18.7.1799.
Article
CAS
PubMed
Google Scholar
Naikoo NA, Afroze D, Rasool R, Shah S, Ahangar AG, Bhat IA, et al. SNP and Haplotype Analysis of Vascular Endothelial Growth Factor (VEGF) Gene in Lung Cancer Patients of Kashmir. Asian Pac J Cancer Prev. 2017;18:1799–804. https://doi.org/10.2147/HP.S117967.
Article
PubMed
PubMed Central
Google Scholar
Buroker NE, Ning XH, Zhou ZN, Li K, Cen WJ, Wu XF, et al. SNPs, linkage disequilibrium, and chronic mountain sickness in Tibetan Chinese. Hypoxia (Auckl). 2017;5:67–74. https://doi.org/10.1186/s12943-016-0497-3.
Article
CAS
Google Scholar
Bekes I, Friedl TW, Köhler T, Möbus V, Janni W, Wöckel A, et al. Does VEGF facilitate local tumor growth and spread into the abdominal cavity by suppressing endothelial cell adhesion, thus increasing vascular peritoneal permeability followed by ascites production in ovarian cancer? Mol Cancer. 2016;15:13. https://doi.org/10.3390/genes9120631.
Article
CAS
PubMed
PubMed Central
Google Scholar
Furuya TK, Jacob CE, Tomitão MTP, Camacho LCC, Ramos MFKP, Eluf-Neto J, et al. Association between Polymorphisms in Inflammatory Response-Related Genes and the Susceptibility, Progression and Prognosis of the Diffuse Histological Subtype of Gastric Cancer. Genes (Basel). 2018;9:631. https://doi.org/10.1007/s12035-015-9240-0.
Article
CAS
Google Scholar
Zhang J, Yang J, Chen Y, Mao Q, Li S, Xiong W, et al. Genetic Variants of VEGF (rs201963 and rs3025039) and KDR (rs7667298, rs2305948, and rs1870377) Are Associated with Glioma Risk in a Han Chinese Population: a Case-Control Study. Mol Neurobiol. 2016;53:2610–8. https://doi.org/10.1111/j.1349-7006.2011.02194.x.
Article
CAS
PubMed
Google Scholar
Dong G, Guo X, Fu X, Wan S, Zhou F, Myers RE, et al. Potentially functional genetic variants in KDR gene as prognostic markers in patients with resected colorectal cancer. Cancer Sci. 2012;103:561–8. https://doi.org/10.1093/annonc/mdp452.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim DH, Xu W, Kamel-Reid S, Liu X, Jung CW, Kim S, et al. Clinical relevance of vascular endothelial growth factor (VEGFA) and VEGF receptor (VEGFR2) gene polymorphism on the treatment outcome following imatinib therapy. Ann Oncol. 2010;21:1179–88. https://doi.org/10.3109/0886022X.2012.669322.
Article
CAS
PubMed
Google Scholar
Brimble KS, Walker M, Margetts PJ, Kundhal KK, Rabbat CG. Meta-analysis: peritoneal membrane transport, mortality, and technique failure in peritoneal dialysis. J Am Soc Nephrol. 2006;17:2591–8. https://doi.org/10.1681/ASN.2006030194.
Article
PubMed
Google Scholar
Rodrigues AS, Almeida M, Fonseca I, Martins M, Carvalho MJ, Silva F, et al. Peritoneal fast transport in incident peritoneal dialysis patients is not consistently associated with systemic inflammation. Nephrol Dial Transplant. 2006;21:763–9. https://doi.org/10.1093/ndt/gfi245.
Article
PubMed
Google Scholar
Rodrigues R, Martins AS, Korevaar M, Silva JC, Oliveira S, Cabrita JC A, et al. Evaluation of peritoneal transport and membrane status in peritoneal dialysis: focus on incident fast transporters. Am J Nephrol. 2007;27:84–91. https://doi.org/10.1159/000099332.
Article
CAS
PubMed
Google Scholar
Gao D, Zhao ZZ, Liang XH, Li Y, Cao Y, Liu ZS. Effect of peritoneal dialysis on expression of vascular endothelial growth factor, basic fibroblast growth factor and endostatin of the peritoneum in peritoneal dialysis patients. Nephrol (Carlton). 2011;16:736–42. https://doi.org/10.1111/j.1440-1797.2011.01502.x.
Article
CAS
Google Scholar
Ding L, Shao X, Cao L, Fang W, Yan H, Huang J, et al. Possible role of IL-6 and TIE2 gene polymorphisms in predicting the initial high transport status in patients with peritoneal dialysis: an observational study. BMJ Open. 2016;6:e012967. https://doi.org/10.1136/bmjopen-2016-012967.
Article
PubMed
PubMed Central
Google Scholar
Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond). 2005;109:227–41. https://doi.org/10.1042/CS20040370.
Article
CAS
Google Scholar
Goligorsky MS. Endothelial cell dysfunction: can’t live with it, how to live without it. Am J Physiol Renal Physiol. 2005;288:F871–80. https://doi.org/10.1152/ajprenal.00333.2004.
Article
CAS
PubMed
Google Scholar
Melincovici CS, Boşca AB, Şuşman S, Mărginean M, Mihu C, Istrate M, et al. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59:455–67.
PubMed
Google Scholar
Melder RJ, Koenig GC, Witwer BP, Safabakhsh N, Munn LL, Jain RK. During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat Med. 1996;2:992–7. https://doi.org/10.1038/nm0996-992.
Article
CAS
PubMed
Google Scholar
Watson CJ, Webb NJ, Bottomley MJ, Brenchley PE. Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: correlation with variation in VEGF protein production. Cytokine. 2000;12:1232–5. https://doi.org/10.1006/cyto.2000.0692.
Article
CAS
PubMed
Google Scholar
Pérez-Lozano ML, Sandoval P, Rynne-Vidal A, Aguilera A, Jiménez-Heffernan JA, Albar-Vizcaíno P, et al (2013) Functional relevance of the switch of VEGF receptors/co-receptors during peritoneal dialysis-induced mesothelial to mesenchymal transition. PLoS One. 2013;8(4):e60776. https://doi.org/10.1371/journal.pone.0060776.
Clinical T. Registration: www.ClinicalTrials.gov, identifier: NCT04888065.