National Institute for Health and Care Excellence. Chronic kidney disease in adults: assessment and management. Clinical guideline [CG182]. 2015. https://www.nice.org.uk/guidance/cg182. Accessed 28 July 2017
Levin A, Stevens PE, Bilous RW, et al. Kidney disease: improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3(1):1–150.
Article
Google Scholar
Jafar TH, Schmid CH, Landa M, et al. Angiotensin-converting enzyme inhibitors and progression of nondiabetic renal disease. A meta-analysis of patient-level data. Ann Intern Med. 2001;135(2):73–87.
Article
CAS
Google Scholar
Evans M, Bain SC, Hogan S, Bilous RW. Irbesartan delays progression of nephropathy as measured by estimated glomerular filtration rate: post hoc analysis of the Irbesartan diabetic nephropathy trial. Nephrol Dial Transplant. 2012;27(6):2255–63.
Article
CAS
Google Scholar
Xie X, Liu Y, Perkovic V, et al. Renin-angiotensin system inhibitors and kidney and cardiovascular outcomes in patients with CKD: a Bayesian network meta-analysis of randomized clinical trials. Am J Kidney Dis. 2016;67(5):728–41.
Article
CAS
Google Scholar
Currie G, Taylor AH, Fujita T, et al. Effect of mineralocorticoid receptor antagonists on proteinuria and progression of chronic kidney disease: a systematic review and meta-analysis. BMC Nephrol. 2016;17(1):127.
Article
Google Scholar
Epstein M. Hyperkalemia constitutes a constraint for implementing renin-angiotensin-aldosterone inhibition: the widening gap between mandated treatment guidelines and the real-world clinical arena. Kidney Int Suppl. 2016;6(1):20–8.
Article
Google Scholar
Yildirim T, Arici M, Piskinpasa S, et al. Major barriers against renin–angiotensin–aldosterone system blocker use in chronic kidney disease stages 3–5 in clinical practice: a safety concern? Ren Fail. 2012;34(9):1095–9.
Article
CAS
Google Scholar
Preston RA, Afshartous D, Garg D, et al. Mechanisms of impaired potassium handling with dual renin-angiotensin-aldosterone blockade in chronic kidney disease. Hypertension. 2009;53(5):754–60.
Article
CAS
Google Scholar
Epstein M. Hyperkalemia as a constraint to therapy with combination renin-angiotensin system blockade: the elephant in the room. J Clin Hypertens. 2009;11(2):55–60.
Article
Google Scholar
Luo J, Brunelli SM, Jensen DE, Yang A. Association between serum potassium and outcomes in patients with reduced kidney function. Clin J Am Soc Nephrol. 2016;11(1):90–100.
Article
CAS
Google Scholar
Theisen-Toupal J. Hypokalemia and Hyperkalemia. Hosp Med Clin. 2015;4(1):34–50.
Article
Google Scholar
Viera AJ, Wouk N. Potassium Disorders: Hypokalemia and Hyperkalemia. Am Fam Physician. 2015;92(6):487–95.
PubMed
Google Scholar
Tran HA. Extreme hyperkalemia. South Med J. 2005;98:729–32.
Article
CAS
Google Scholar
Williams ME. Hyperkalemia. Crit Care Clin. 1991;7(1):155–74.
Article
CAS
Google Scholar
Esposito C, Bellotti N, Fasoli G, Plati A, Dal CA. Hyperkalemia-induced ECG abnormalities in patients with reduced renal function. Clin Nephrol. 2004;62(6):465–8.
Article
CAS
Google Scholar
Obialo CI, Ofili EO, Mirza T. Hyperkalemia in CHF patients aged 63 to 85 years with subclinical renal disease. Am J Cardiol. 2003;90(6):663–5.
Article
Google Scholar
Mandal AK. Hypokalemia and hyperkalemia. Med Clin North Am. 1997;81(3):611–539.
Article
CAS
Google Scholar
Wiebe N, Klarenbach SW, Allan GM, et al. Potentially preventable hospitalization as a complication of CKD: a cohort study. Am J Kidney Dis. 2014;64(2):230–8.
Article
Google Scholar
Collins AJ, Pitt B, Reaven N, et al. Association of serum potassium with all-cause mortality in patients with and without heart failure, chronic kidney disease, and/or diabetes. Am J Nephrol. 2017;46(3):213–21.
Article
CAS
Google Scholar
Nakhoul GN, Huang H, Arrigain S, et al. Serum potassium, end-stage renal disease and mortality in chronic kidney disease. Am J Nephrol. 2015;41(6):456–63.
Article
CAS
Google Scholar
Khanagavi J, Gupta T, Aronow WS, et al. Hyperkalemia among hospitalized patients and association between duration of hyperkalemia and outcomes. Arch Med Sci. 2014;10(2):251–7.
Article
Google Scholar
Jain N, Kotla S, Little BB, et al. Predictors of hyperkalemia and death in patients with cardiac and renal disease. Am J Cardiol. 2012;109(10):1510–3.
Article
CAS
Google Scholar
Hayes J, Kalantar-Zadeh K, Lu JL, et al. Association of hypo-and hyperkalemia with disease progression and mortality in males with chronic kidney disease: the role of race. Nephron Clin Pract. 2011;120(1):c8–16.
Article
Google Scholar
Korgaonkar S, Tilea A, Gillespie BW, et al. Serum potassium and outcomes in CKD: insights from the RRI-CKD cohort study. Clin J Am Soc Nephrol. 2010;5(5):762–9.
Article
CAS
Google Scholar
Einhorn LM, Zhan M, Walker LD, et al. The frequency of hyperkalemia and its significance in chronic kidney disease. Arch Intern Med. 2009;169(12):1156–62.
Article
Google Scholar
Furuland H, McEwan P, Evans M, Linde C, Ayoubkhani D, Bakhai A, Palaka E, Bennett H, Qin L. Serum potassium as a predictor of adverse clinical outcomes in patients with chronic kidney disease: new risk equations using the UK clinical practice research datalink. BMC Nephrol. 2018;19(1):211.
Article
Google Scholar
Rosano G, Tamargo J, Kjeldsen KP, et al. Expert consensus document on the management of hyperkalaemia in patients with cardiovascular disease treated with renin angiotensin aldosterone system inhibitors: coordinated by the working group on cardiovascular pharmacotherapy of the European Society of Cardiology. Eur Heart J Cardiovasc Pharmacother. 2018;4(3):180–8.
Article
Google Scholar
Epstein M, Reaven NL, Funk SE, et al. Evaluation of the treatment gap between clinical guidelines and the utilization of renin-angiotensin-aldosterone system inhibitors. Am J Manag Care. 2015;21(Suppl 11):s212–20.
PubMed
Google Scholar
Ouwerkerk W, Voors A, Anker S, et al. Determinants and clinical outcome of uptitration of ACE-inhibitors and beta-blockers in patients with heart failure: a prospective European study. Eur Heart J. 2017;38:1883–90.
Article
CAS
Google Scholar
Komajda M, Cowie MR, Tavazzi L, et al. Physicians' guideline adherence is associated with better prognosis in outpatients with heart failure with reduced ejection fraction: the QUALIFY international registry. Eur J Heart Fail. 2017;19(11):1414–23.
Article
CAS
Google Scholar
Hoerger TJ, Wittenborn JS, Segel JE, et al. A health policy model of CKD: 1. Model construction, assumptions, and validation of health consequences. Am J Kidney Dis. 2010;55(3):452–62.
Article
Google Scholar
Orlando LA, Belasco EJ, Patel UD, Matchar DB. The chronic kidney disease model: a general purpose model of disease progression and treatment. BMC Med Inform Decis Mak. 2011;11(1):41.
Article
Google Scholar
Gandjour A, Tschulena U, Steppan S, Gatti E. A simulation model to estimate cost-offsets for a disease-management program for chronic kidney disease. Expert Rev Pharmacoecon Outcomes Res. 2015;15(2):341–7.
Article
Google Scholar
Tangri N, Stevens LA, Griffith J, et al. A predictive model for progression of chronic kidney disease to kidney failure. JAMA. 2011;305(15):1553–9.
Article
CAS
Google Scholar
Kiberd BA. Estimating the long term impact of kidney donation on life expectancy and end stage renal disease. Transplant Res. 2013;2(1):2.
Article
Google Scholar
Lee CP, Chertow GM, Zenios SA. A simulation model to estimate the cost and effectiveness of alternative dialysis initiation strategies. Med Decis Mak. 2006;26(5):535–49.
Article
Google Scholar
UK Renal Association. UK Renal Registry 18th Annual Report 2016. https://www.renalreg.org/wp-content/uploads/2015/01/web_book_07-04-16.pdf. Accessed 8 Dec 2016.
Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–305.
Article
CAS
Google Scholar
Colquitt JL, Mendes D, Clegg AJ, et al. Implantable cardioverter defibrillators for the treatment of arrhythmias and cardiac resynchronisation therapy for the treatment of heart failure: systematic review and economic evaluation. Health Technol Assess. 2014;18(56):1–560.
Article
Google Scholar
Office for National Statistics. National Life Tables, United Kingdom; based on data for the years 2013–2015. 2016. www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/datasets/nationallifetablesunitedkingdomreferencetables. Accessed 8 Dec 2016.
Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(27):2129–200.
Article
Google Scholar
Haymarket Media Group Ltd. Monthly index of medical Specialities. 2017. http://www.mims.co.uk/. Accessed 16 Nov 2017.
National Institute for Health and Care Excellence. Chronic kidney disease (stage 5): peritoneal dialysis. Clinical guideline [CG125]. 2011. https://www.nice.org.uk/guidance/cg125. Accessed 8 Dec 2016.
Baboolal K, McEwan P, Sondhi S, et al. The cost of renal dialysis in a UK setting – a multicentre study. Nephrol Dial Transplant. 2008;23(6):1982–9.
Article
Google Scholar
Department of Health. NHS reference costs 2014 to 2015. 2015. https://www.gov.uk/government/publications/nhs-reference-costs-2014-to-2015.
Curtis L, Burns A. Personal social services research unit (PSSRU) unit costs of health and social care 2015. 2015. https://www.pssru.ac.uk/pub/uc/uc2015/full.pdf. Accessed 8 Dec 2016.
Gorodetskaya I, Zenios S, Mcculloch CE, et al. Health-related quality of life and estimates of utility in chronic kidney disease. Kidney Int. 2005;68(6):2801–8.
Article
Google Scholar
Lee AJ, Morgan CL, Conway P, Currie CJ. Characterisation and comparison of health-related quality of life for patients with renal failure. Curr Med Res Opin. 2005;21(11):1777–83.
Article
Google Scholar
Sullivan PW, Slejko JF, Sculpher MJ, Ghushchyan V. Catalogue of EQ-5D scores for the United Kingdom. Med Decis Mak. 2011;31(6):800–4.
Article
Google Scholar
Haacke C, Althaus A, Spottke A, et al. Long-term outcome after stroke evaluating health-related quality of life using utility measurements. Stroke. 2006;37(1):193–8.
Article
Google Scholar
Holland R, Rechel B, Stepien K, Harvey I, Brooksby I. Patients' self-assessed functional status in heart failure by New York heart association class: a prognostic predictor of hospitalizations, quality of life and death. J Card Fail. 2010;16(2):150–6.
Article
Google Scholar
Lacey EA, Musgrave RJ, Freeman JV, Tod AM, Scott P. Psychological morbidity after myocardial infarction in an area of deprivation in the UK: evaluation of a self-help package. Eur J Cardiovasc Nurs. 2004;3(3):219–24.
Article
Google Scholar
Göhler A, Geisler BP, Manne JM, et al. Utility estimates for decision-analytic modeling in chronic heart failure – health states based on New York heart association classes and number of Rehospitalizations. Value Health. 2009;12(1):185–7.
Article
Google Scholar
Sennfalt K, Magnusson M, Carlsson P. Comparison of hemodialysis and peritoneal dialysis--a cost-utility analysis. Perit Dial Int. 2002;22(1):39–47.
PubMed
Google Scholar
Szende A, Janssen B, Cabases J. Self-reported population health: an international perspective based on EQ-5D: springer open; 2014.
Book
Google Scholar
Qin L, McEwan P, Evans M, et al. The relationship between serum K+ and incidence rates of major adverse cardiovascular events and mortality in UK patients with CKD. Nephrol Dial Transplant. 2017;32(Suppl 3):iii73–4.
Article
Google Scholar
Qin L, McEwan P, Evans M, et al. The relationship between serum potassium concentrations and discontinuation of renin-angiotensin-aldosterone system inhibitors in UK patients with CKD. Nephrol Dial Transplant. 2017;32(Suppl 3):iii564–5.
Article
Google Scholar
National Institute for Health and Care Excellence. Guide to the methods of technology appraisal 2013. Process and methods [PMG9]. 2013. https://www.nice.org.uk/process/pmg9. Accessed 6 Dec 2017.
Bakhai A, Palaka E, Linde C, Bennett H, Furuland H, Qin L, McEwan P, Evans M. Development of a health economic model to evaluate the potential benefits of optimal serum potassium management in patients with heart failure. J Med Econ. 2018;21(12):1172–82.
Article
Google Scholar
Lazich I, Bakris GL. Prediction and management of hyperkalemia across the spectrum of chronic kidney disease. Semin Nephrol. 2014;34(3):333–9.
Article
CAS
Google Scholar
Kovesdy CP. Management of hyperkalaemia in chronic kidney disease. Nat Rev Nephrol. 2014 Nov;10(11):653–62.
Article
CAS
Google Scholar
Kovesdy CP. Updates in hyperkalemia: outcomes and therapeutic strategies. Rev Endocr Metab Disord. 2017 Mar;18(1):41–7.
Article
CAS
Google Scholar
Chaitman M, Dixit D, Bridgeman MB. Potassium-binding agents for the clinical Management of Hyperkalemia. Pharmacy and Therapeutics. 2016;41:43–50.
PubMed
PubMed Central
Google Scholar
Grima DT, Bernard LM, Dunn ES, McFarlane PA, Mendelssohn DC. Cost-effectiveness analysis of therapies for chronic kidney disease patients on dialysis: a case for excluding dialysis costs. PharmacoEconomics. 2012;30(11):981–9.
Article
Google Scholar