We have developed a network-wide CKD registry designed to measure performance on quality metrics and track clinical outcomes over time. We used a continuous process improvement model to validate and refine our registry data based on manual chart review. We demonstrated a level of accuracy for identification of patients and clinical markers that will facilitate robust quality improvement. Our CKD registry has identified population level improvement opportunities amenable to systems interventions.
Few studies have developed and examined the implementation of a CKD registry [4, 12, 15, 17,18,19]. The Cleveland Clinic developed an EHR-based CKD registry to identify CKD patients based on lab data, and was initially comprised of 65,116 patients [14]. It has been utilized to disseminate CKD stage-specific education, facilitate clinical trials and improve lab monitoring [12, 14, 18]. A recent randomized trial demonstrated that an electronic CKD registry can be used to improve urine protein testing and appropriate nephrology management for stage 3 CKD patients [19]. Finally, a recent trial utilized a CKD registry to facilitate population management strategies including quarterly performance reports to PCPs and point of care management [17].
Our CKD registry is distinct from the registries previously described as it integrates data to drive more comprehensive CKD care improvement. We include information on effectiveness (blood pressure management, use of ACE-I/ARB, and nephrology co-management), safety (nephrotoxic medications and hepatitis B immunization), cost (ED visits and hospitalizations), and clinical outcomes (CKD progression and patient reported outcomes [PROMs]) across the full spectrum of CKD stages.
Opportunities to create value: the identification of gaps in care
Studies to date illustrate the need for regional or network-based CKD registries that aggregate objective data [23], but have not been focused on clear care gaps that can be utilized by both PCPs and nephrologists. Our CKD registry suggests multiple areas for improvement in the delivery of care. With respect to early CKD management often performed by PCPs, rates of proteinuria testing and ACE-I/ARB treatment should be targeted. For advanced CKD and nephrologist-based care, nephrotoxin avoidance, hepatitis B immunization, vascular access placement and transplant evaluation can be improved. CKD patients in our registry are high utilizers of inpatient care, consistent with findings in the general CKD population [6]. The inclusion of the Tangri risk scores and utilization data will help identify patients at greatest risk and need for intervention.
Within our institution, the first phase of CKD registry implementation will involve education of clinicians across PHS practice sites, followed by implementation of a registry coordinator to promote population health strategies.
Population health strategies for CKD management
The CKD registry facilitates data driven population health interventions, whereas previous efforts have been based on national data trends. The goal is to slow the progression of renal disease, prevent complications, and optimize transitions along the CKD spectrum (Fig. 3) [7].Our organization is currently utilizing the CKD registry to deploy population health management strategies including e-consults, computer decision support (CDS) for nephrology referral, PROMs and ESRD care coordination. We are in the process of developing additional CDS for quality metrics, and implementing advanced CKD care coordination. The first challenge is to improve rates of CKD recognition. Our robust specialty e-consult program can facilitate early CKD management by PCPs with nephrology support, without in-person visits. Timely referral of CKD patients to nephrology can be supported via identification of patients at highest risk for progression and CDS. As patients progress through stages of CKD, renal replacement therapy (RRT) planning becomes as important as managing CKD complications. The registry can facilitate coordinated, multi-disciplinary care for advanced CKD by capturing timely, accurate data regarding progression, and the need for vascular access. Ideal application of a CKD registry involves population health coordinators who track performance data over time, and facilitate key care processes. The registry can be leveraged by coordinators to facilitate RRT initiation discussions, modality decisions and conservative or palliative care. Finally, we have incorporated PROMs data in our registry, to drive shared decision-making and gauge patients’ perception of their health. We chose the KDOQL-SF 1.3 to capture PROMS data, because it includes 43 kidney-disease targeted items and has been validated in chronic kidney disease across ethnic groups [24].
Strengths
Our CKD registry has a number of strengths. First, it aggregates data from a large patient population in an integrated network. Second, our registry uses the EHR as a dynamic data source leveraging labs, medication/prescription data, billing, and clinician encounters. Third, our algorithms for CKD stage identification, vascular access, and transplant status were developed iteratively over 2 years based on feedback from PCP, nephrology and population health leadership. Fourth, we have included a broad range of metrics from early to advanced CKD, enabling use by both PCPs and nephrologists. Fifth, the tool is accessible both by individual providers and clinical directors engaged in clinical management as well as population health specialists interested in systems-based interventions. Finally, the registry incorporates important clinical outcomes like CKD progression, ED visits, and hospitalizations that can be utilized to evaluate the impact of interventions on outcomes.
Limitations
Though our CKD registry has undergone multiple iterations before reaching its current state, it may benefit from further revision. Identification and stratification of patients continues to be a major challenge. Identification is inherently limited by screening, and efforts to promote screening are needed. Identification of patients with 5D CKD who receive dialysis at outside dialysis units, but receive inpatient and interventional nephrology care through our system, Our validation approach demonstrates that despite refinement of the 5D identification algorithm, there are limitations to labs, diagnosis codes and targeted word search. This is reflective of the dynamic status of CKD, but also exemplifies fragmented care, specifically RRT, that occurs in disparate locations.
Staging stratification based on eGFR is complex given the moving target in most patients. We define stage based on most recent eGFR for consistency, but the argument could be made for a blended average approach. With regards to loss to follow-up, patients without either a visit or a laboratory test within the past 5.5 years are dropped from the registry to focus care. Future iterations of the CKD registry may include follow-up with patients nearing the time for removal from the registry. Similarly, given that all Partners CKD patients are included in the registry, analysis is limited to positive predictive value and does not include sensitivity or specificity. Another limitation is that the registry is not currently linked to external registries such as USRDS or the Social Security Death Master File, which would ensure more accurate identification of 5D patients and mortality, respectively. Our utilization data is limited given that the registry is restricted to in-network visits, and therefore, may be underestimating total visits. Finally, the low rate of HBV vaccination among stage 5D patients may reflect the fact that they receive most of their care at dialysis units that do not share an EHR with PHS.
Implications
We believe that institutions and networks should adopt EHR-based CKD registries as we move towards value-based care. There is a need for regional and institution-based registries as there is known regional variation in care delivered. Furthermore, as cardiovascular disease remains the greatest cause of mortality in CKD patients, the inclusion of data regarding cardiovascular risk factors in this registry will foster robust multi-disciplinary cardiovascular risk optimization.