Asimakopoulou A, Borkham-Kamphorst E, Tacke F, Weiskirchen R. Lipocalin-2 (NGAL/LCN2), a "help-me" signal in organ inflammation. Hepatology. 2016;63(2):669–71.
Article
Google Scholar
Buonafine M, Martinez-Martinez E, Jaisser F. More than a simple biomarker: the role of NGAL in cardiovascular and renal diseases. Clin Sci (Lond). 2018;132(9):909–23.
Article
CAS
Google Scholar
Abella V, Scotece M, Conde J, Gómez R, Lois A, Pino J, et al. The potential of lipocalin-2/NGAL as biomarker for inflammatory and metabolic diseases. Biomarkers. 2015;20(8):565–71.
Article
CAS
Google Scholar
Gouweleeuw L, Naudé PJ, Rots M, DeJongste MJ, Eisel UL, Schoemaker RG. The role of neutrophil gelatinase associated lipocalin (NGAL) as biological constituent linking depression and cardiovascular disease. Brain Behav Immun. 2015;46:23–32.
Article
CAS
Google Scholar
Mosialou I, Shikhel S, Liu JM, Maurizi A, Luo N, He Z, et al. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature. 2017;543(7645):385–90.
Article
CAS
Google Scholar
Luo Y, Ma X, Pan X, Xu Y, Xiong Q, Xiao Y, et al. Serum lipocalin-2 levels are positively associated with not only total body fat but also visceral fat area in Chinese men. Medicine (Baltimore). 2016;95(30):e4039.
Article
CAS
Google Scholar
Jaberi SA, Cohen A, D'Souza C, Abdulrazzaq YM, Ojha S, Bastaki S, et al. Lipocalin-2: structure, function, distribution and role in metabolic disorders. Biomed Pharmacother. 2021;142:112002.
Article
CAS
Google Scholar
Bedouhène S, Dang PM, Hurtado-Nedelec M, El-Benna J. Neutrophil degranulation of Azurophil and specific granules. Methods Mol Biol. 2020;2087:215–22.
Article
Google Scholar
Lekva T, Gullestad L, Broch K, Aukrust P, Andreassen AK, Ueland T. Distinct patterns of soluble leukocyte activation markers are associated with etiology and outcomes in precapillary pulmonary hypertension. Sci Rep. 2020;10(1):18540.
Article
CAS
Google Scholar
Araos P, Prado C, Lozano M, Figueroa S, Espinoza A, Berger T, et al. Dendritic cells are crucial for cardiovascular remodeling and modulate neutrophil gelatinase-associated lipocalin expression upon mineralocorticoid receptor activation. J Hypertens. 2019;37(7):1482–92.
Article
CAS
Google Scholar
Meyers K, López M, Ho J, Wills S, Rayalam S, Taval S. Lipocalin-2 deficiency may predispose to the progression of spontaneous age-related adiposity in mice. Sci Rep. 2020;10(1):14589.
Article
CAS
Google Scholar
Marques FZ, Prestes PR, Byars SG, Ritchie SC, Würtz P, Patel SK, et al. Experimental and human evidence for Lipocalin-2 (neutrophil gelatinase-associated Lipocalin [NGAL]) in the development of cardiac hypertrophy and heart failure. J Am Heart Assoc. 2017;6(6):e005971.
Article
Google Scholar
Olson B, Zhu X, Norgard MA, Diba P, Levasseur PR, Buenafe AC, et al. Chronic cerebral lipocalin 2 exposure elicits hippocampal neuronal dysfunction and cognitive impairment. Brain Behav Immun. 2021;S0889-1591(21):00266–X.
Google Scholar
Krizanac M, Mass Sanchez PB, Weiskirchen R, Asimakopoulos A. A scoping review on Lipocalin-2 and its role in non-alcoholic steatohepatitis and hepatocellular carcinoma. Int J Mol Sci. 2021;22(6):2865.
Article
CAS
Google Scholar
Malyszko J, Malyszko JS, Koc-Zorawska E, Kozminski P, Mysliwiec M. Neutrophil gelatinase-associated lipocalin in dialyzed patients is related to residual renal function, type of renal replacement therapy and inflammation. Kidney Blood Press Res. 2009;32(6):464–9.
Article
CAS
Google Scholar
Song X, Cai D, Zhang B. Clinical values of serum NGAL combined with NT-proBNP in the early prognosis of type 1 cardiorenal syndrome. Am J Transl Res. 2021;13(4):3363–8.
PubMed
PubMed Central
Google Scholar
Shang W, Wang Z. The update of NGAL in acute kidney injury. Curr Protein Pept Sci. 2017;18(12):1211–7.
Article
CAS
Google Scholar
Lin X, Onda DA, Yang CH, Lewis JR, Levinger I, Loh K. Roles of bone-derived hormones in type 2 diabetes and cardiovascular pathophysiology. Mol Metab. 2020;40:101040.
Article
CAS
Google Scholar
Jia XY, Wei K, Chen J, Xi LH, Kong XL, Wei Y, et al. Association of plasma neutrophil gelatinase-associated lipocalin with parameters of CKD-MBD in maintenance hemodialysis patients. J Bone Miner Metab. 2021. https://doi.org/10.1007/s00774-021-01248-9.
Rogers MA, Aikawa E. Cardiovascular calcification: artificial intelligence and big data accelerate mechanistic discovery. Nat Rev Cardiol. 2019;16(5):261–74.
Article
CAS
Google Scholar
Pedrosa JF, Barreto SM, Bittencourt MS, Ribeiro ALP. Anatomical references to evaluate thoracic aorta calcium by computed tomography. Curr Atheroscler Rep. 2019;21(12):51.
Article
Google Scholar
Fujii H, Kono K, Watanabe K, Goto S, Nishii T, Kono A, et al. Evaluation of aortic calcification using a three-dimensional volume-rendering method in patients with end-stage kidney disease. J Bone Miner Metab. 2021;39(3):439–45.
Article
Google Scholar
Chong JJH, Prince RL, Thompson PL, Thavapalachandran S, Ooi E, Devine A, et al. Association between plasma neutrophil gelatinase-associated Lipocalin and cardiac disease hospitalizations and deaths in older women. J Am Heart Assoc. 2019;8(1):e011028.
Article
CAS
Google Scholar
Hénaut L, Chillon JM, Kamel S, Massy ZA. Updates on the mechanisms and the Care of Cardiovascular Calcification in chronic kidney disease. Semin Nephrol. 2018;38(3):233–50.
Article
Google Scholar
Massy ZA, Drüeke TB. Vascular calcification. Curr Opin Nephrol Hypertens. 2013;22(4):405–12.
Article
CAS
Google Scholar
Himmelsbach A, Ciliox C, Goettsch C. Cardiovascular calcification in chronic kidney disease-therapeutic opportunities. Toxins (Basel). 2020;12(3):181.
Article
CAS
Google Scholar
Nafakhi H, Al-Nafakh HA, Al-Mosawi AA, Al GF. Correlations between aortic root calcification and coronary artery atherosclerotic markers assessed using multidetector computed tomography. Acad Radiol. 2015;22(3):357–62.
Article
Google Scholar
Okada H, Tada H, Hayashi K, Kawashima H, Takata T, Sakata K, et al. Aortic root calcification score as an independent factor for predicting major adverse cardiac events in familial hypercholesterolemia. J Atheroscler Thromb. 2018;25(7):634–42.
Article
CAS
Google Scholar
Zografos T, Haliassos A, Korovesis S, Giazitzoglou E, Voridis E, Katritsis D. Association of neutrophil gelatinase-associated lipocalin with the severity of coronary artery disease. Am J Cardiol. 2009;104(7):917–20.
Article
CAS
Google Scholar
Wu G, Li H, Fang Q, Jiang S, Zhang L, Zhang J, et al. Elevated circulating lipocalin-2 levels independently predict incident cardiovascular events in men in a population-based cohort. Arterioscler Thromb Vasc Biol. 2014;34(11):2457–64.
Article
CAS
Google Scholar
Lindberg S, Jensen JS, Mogelvang R, Pedersen SH, Galatius S, Flyvbjerg A, et al. Plasma neutrophil gelatinase-associated lipocalinin in the general population: association with inflammation and prognosis. Arterioscler Thromb Vasc Biol. 2014;34(9):2135–42.
Article
CAS
Google Scholar
Tarín C, Fernandez-Garcia CE, Burillo E, Pastor-Vargas C, Llamas-Granda P, Castejón B, et al. Lipocalin-2 deficiency or blockade protects against aortic abdominal aneurysm development in mice. Cardiovasc Res. 2016;111(3):262–73.
Article
Google Scholar
Song E, Fan P, Huang B, Deng HB, Cheung BM, Félétou M, et al. Deamidated lipocalin-2 induces endothelial dysfunction and hypertension in dietary obese mice. J Am Heart Assoc. 2014;3(2):e000837.
Article
Google Scholar
Liu JT, Song E, Xu A, Berger T, Mak TW, Tse HF, et al. Lipocalin-2 deficiency prevents endothelial dysfunction associated with dietary obesity: role of cytochrome P450 2C inhibition. Br J Pharmacol. 2012;165(2):520–31.
Article
CAS
Google Scholar
Rau S, Habicht A, Kauke T, Hillmer A, Wessely M, Stangl M, et al. Neutrophil gelatinase-associated lipocalin and end-stage renal disease: it is not all about the kidneys! Eur J Clin Investig. 2013;43(8):816–20.
Article
CAS
Google Scholar
Dixit M, Liu Z, Poudel SB, Yildirim G, Zhang YZ, Mehta S, et al. Skeletal response to insulin in the naturally occurring type 1 diabetes mellitus mouse model. JBMR Plus. 2021;5(5):e10483.
Article
CAS
Google Scholar
Donat A, Knapstein PR, Jiang S, Baranowsky A, Ballhause TM, Frosch KH, et al. Glucose metabolism in osteoblasts in healthy and pathophysiological conditions. Int J Mol Sci. 2021;22(8):4120.
Article
CAS
Google Scholar
Cipriani C, Colangelo L, Santori R, Renella M, Mastrantonio M, Minisola S, et al. The interplay between bone and glucose metabolism. Front Endocrinol (Lausanne). 2020;11:122.
Article
Google Scholar
Moreira CA, Barreto FC, Dempster DW. New insights on diabetes and bone metabolism. J Bras Nefrol. 2015;37(4):490–5.
Article
Google Scholar
Sugimoto T, Ritter C, Morrissey J, Hayes C, Slatopolsky E. Effects of high concentrations of glucose on PTH secretion in parathyroid cells. Kidney Int. 1990;37(6):1522–7.
Article
CAS
Google Scholar
Bover J, Ureña P, Brandenburg V, Goldsmith D, Ruiz C, DaSilva I, et al. Adynamic bone disease: from bone to vessels in chronic kidney disease. Semin Nephrol. 2014;34(6):626–40.
Article
Google Scholar