Zhang QL, Rothenbacher D. Prevalence of chronic kidney disease in population-based studies: systematic review. BMC Public Health. 2008;8:117. https://doi.org/10.1186/1471-2458-8-117.
Article
PubMed
PubMed Central
Google Scholar
Purnell TS, Auguste P, Crews DC, Lamprea-Montealegre J, Olufade T, Greer R, et al. Comparison of life participation activities among adults treated by hemodialysis, peritoneal dialysis, and kidney transplantation: a systematic review. Am J Kidney Dis. 2013;62(5):953–73. https://doi.org/10.1053/j.ajkd.2013.03.022.
Article
PubMed
Google Scholar
Topuz K, Zengul FD, Dag A, Almehmi A, Yildirim MB. Predicting graft survival among kidney transplant recipients: a Bayesian decision support model. Decis Support Syst. 2018;106:97–109. https://doi.org/10.1016/j.dss.2017.12.004.
Article
Google Scholar
Chesnaye NC, Tripepi G, Dekker FW, Zoccali C, Zwinderman AH, Jager KJ. An introduction to joint models—applications in nephrology. Clin Kidney J. 2020;13(2):143–9. https://doi.org/10.1093/ckj/sfaa024.
Article
PubMed
PubMed Central
Google Scholar
Rizopoulos D, Ghosh P. A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. Stat Med. 2011;30(12):1366–80. https://doi.org/10.1002/sim.4205.
Article
PubMed
Google Scholar
Lubetzky M, Tantisattamo E, Molnar MZ, Lentine KL, Basu A, Parsons RF, et al. The failing kidney allograft: a review and recommendations for the care and management of a complex group of patients. Am J Transplant. 2021;21(9):2937–49. https://doi.org/10.1111/ajt.16717.
Article
PubMed
Google Scholar
Kaboré R, Haller MC, Harambat J, Heinze G, Leffondré K. Risk prediction models for graft failure in kidney transplantation: a systematic review. Nephrol Dial Transplant. 2017;32(suppl_2):ii68–76. https://doi.org/10.1093/ndt/gfw405.
Article
PubMed
Google Scholar
Loupy A, Aubert O, Orandi BJ, Naesens M, Bouatou Y, Raynaud M, et al. Prediction system for risk of allograft loss in patients receiving kidney transplants: international derivation and validation study. BMJ. 2019;366:l4923. https://doi.org/10.1136/bmj.l4923.
Article
PubMed
PubMed Central
Google Scholar
Udomkarnjananun S, Townamchai N, Kerr SJ, Tasanarong A, Noppakun K, Lumpaopong A, et al. The first Asian kidney transplantation prediction models for long-term patient and allograft survival. Transplantation. 2020;104(5):1048–57. https://doi.org/10.1097/TP.0000000000002918.
Article
PubMed
Google Scholar
Senanayake S, Kularatna S, Healy H, Graves N, Baboolal K, Sypek MP, et al. Development and validation of a risk index to predict kidney graft survival: the kidney transplant risk index. BMC Med Res Methodol. 2021;21(1):127. https://doi.org/10.1186/s12874-021-01319-5.
Article
PubMed
PubMed Central
Google Scholar
Miller G, Ankerst DP, Kattan MW, Hüser N, Vogelaar S, Tieken I, et al. Kidney Transplantation Outcome Predictions (KTOP): A Risk Prediction Tool for Kidney Transplants from Brain-dead Deceased Donors Based on a Large European Cohort. Eur Urol. 2022 (In Press). https://doi.org/10.1016/j.eururo.2021.12.008.
van Walraven C, Austin PC, Knoll G. Predicting potential survival benefit of renal transplantation in patients with chronic kidney disease. CMAJ. 2010;182(7):666–72. https://doi.org/10.1503/cmaj.091661.
Article
PubMed
PubMed Central
Google Scholar
Hernández D, Rufino M, Bartolomei S, Lorenzo V, González-Rinne A, Torres A. A novel prognostic index for mortality in renal transplant recipients after hospitalization. Transplantation. 2005;79(3):337–43. https://doi.org/10.1097/01.tp.0000151003.30089.31.
Article
PubMed
Google Scholar
Tiong HY, Goldfarb DA, Kattan MW, Alster JM, Thuita L, Yu C, et al. Nomograms for predicting graft function and survival in living donor kidney transplantation based on the UNOS registry. J Urol. 2009;181(3):1248–55. https://doi.org/10.1016/j.juro.2008.10.164.
Article
CAS
PubMed
Google Scholar
Hernández D, Sánchez-Fructuoso A, González-Posada JM, Arias M, Campistol JM, Rufino M, et al. A novel risk score for mortality in renal transplant recipients beyond the first posttransplant year. Transplantation. 2009;88(6):803–9. https://doi.org/10.1097/TP.0b013e3181b4ac2f.
Article
PubMed
Google Scholar
Dekker FW, Mutsert R, van Dijk PC, Zoccali C, Jager KJ. Survival analysis: time-dependent effects and time-varying risk factors. Kidney Int. 2008;74(8):994–7. https://doi.org/10.1038/ki.2008.328.
Article
PubMed
Google Scholar
Yang Z, Wu H, Hou Y, Yuan H, Chen Z. Dynamic prediction and analysis based on restricted mean survival time in survival analysis with nonproportional hazards. Comput Methods Prog Biomed. 2021;207:106155. https://doi.org/10.1016/j.cmpb.2021.106155.
Article
Google Scholar
Yang Z, Hou Y, Lyu J, Liu D, Chen Z. Dynamic prediction and prognostic analysis of patients with cervical cancer: a landmarking analysis approach. Ann Epidemiol. 2020;44:45–51. https://doi.org/10.1016/j.annepidem.2020.01.009.
Article
PubMed
Google Scholar
Li L, Yang Z, Hou Y, Chen Z. Moving beyond the cox proportional hazards model in survival data analysis: a cervical cancer study. BMJ Open. 2020;10(7):e033965. https://doi.org/10.1136/bmjopen-2019-033965.
Article
PubMed
PubMed Central
Google Scholar
Van Houwelingen HC. Dynamic prediction by landmarking in event history analysis. Scand J Stat. 2007;34(1):70–85. https://doi.org/10.1111/j.1467-9469.2006.00529.x.
Article
Google Scholar
Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361–87. https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4.
Graf E, Schmoor C, Sauerbrei W, Schumacher M. Assessment and comparison of prognostic classification schemes for survival data. Stat Med. 1999;18(17–18):2529–45. https://doi.org/10.1002/(sici)1097-0258(19990915/30)18:17/18<2529::aid-sim274>3.0.co;2-5.
Van Houwelingen HC, Putter H. Dynamic prediction in clinical survival analysis. Boca Raton: CRC Press; 2012.
Google Scholar
Kosorok MR, Laber EB. Precision medicine. Annu Rev Stat Appl. 2019;6:263–86. https://doi.org/10.1146/annurev-statistics-030718-105251.
Article
PubMed
PubMed Central
Google Scholar
Schumacher M, Hieke S, Ihorst G, Engelhardt M. Dynamic prediction: a challenge for biostatisticians, but greatly needed by patients, physicians and the public. Biom J. 2020;62(3):822–35. https://doi.org/10.1002/bimj.201800248.
Article
PubMed
Google Scholar
Ferrer L, Putter H, Proust-Lima C. Individual dynamic predictions using landmarking and joint modelling: validation of estimators and robustness assessment. Stat Methods Med Res. 2019;28(12):3649–66. https://doi.org/10.1177/0962280218811837.
Article
PubMed
Google Scholar
Liao L, Mark DB. Clinical prediction models: are we building better mouse traps? J Am Coll Cardiol. 2003;42(5):851–3. https://doi.org/10.1016/s0735-1097(03)00836-2.
Article
PubMed
Google Scholar
Fournier MC, Foucher Y, Blanche P, Legendre C, Girerd S, Ladrière M, et al. Dynamic predictions of long-term kidney graft failure: an information tool promoting patient-centred care. Nephrol Dial Transplant. 2019;34(11):1961–9. https://doi.org/10.1093/ndt/gfz027.
Article
PubMed
Google Scholar
Kaboré R, Ferrer L, Couchoud C, Hogan J, Cochat P, Dehoux L, et al. Dynamic prediction models for graft failure in paediatric kidney transplantation. Nephrol Dial Transplant. 2021;36(5):927–35. https://doi.org/10.1093/ndt/gfaa180.
Article
PubMed
Google Scholar
Shah N, Al-Khoury S, Afzali B, Covic A, Roche A, Marsh J, et al. Posttransplantation anemia in adult renal allograft recipients: prevalence and predictors. Transplantation. 2006;81(8):1112–8. https://doi.org/10.1097/01.tp.0000205174.97275.b5.
Article
PubMed
Google Scholar
Chhabra D, Grafals M, Skaro AI, Parker M, Gallon L. Impact of anemia after renal transplantation on patient and graft survival and on rate of acute rejection. Clin J Am Soc Nephrol. 2008;3(4):1168–74. https://doi.org/10.2215/CJN.04641007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahmad MS, Fatima R, Farooq H, Maham SN. Hemoglobin, ferritin levels and RBC indices among children entering school and study of their correlation with one another. J Pak Med Assoc. 2020;70(9):1582–6. https://doi.org/10.5455/JPMA.15046.
Article
PubMed
Google Scholar