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Abstract

Background: Although serum under-O-glycosylated IgAT in IgA nephropathy (IgAN) patients may deposit more
preferentially in glomeruli than heavily-O-glycosylated IgAT, the relationship between the glomerular IgA deposition
level and the O-glycan profiles of serum IgA1 remains obscure.

Methods: Serum total under-O-glycosylated IgA1 levels were quantified in 32 IgAN patients by an enzyme-linked
immunosorbent assay (ELISA) with Helix aspersa (HAA) lectin. Serum under-O-glycosylated polymeric IgAT (plgAT)
was selectively measured by an original method using mouse Fca/u receptor (mFca/pR) transfectant and flow
cytometry (plgA1l trap). The percentage area of IgA deposition in the whole glomeruli (Area-IgA) was quantified by
image analysis on the immunofluorescence of biopsy specimens. Correlations were assessed between the Area-IgA
and data from HAA-ELISA or plgAT trap. The relationships between clinical parameters and data from HAA-ELISA or
plgA1 trap were analyzed by data mining approach.

Results: While the under-O-glycosylated IgA1 levels in IgAN patients were significantly higher than those in healthy
controls when measured (p < 0.05), there was no significant difference in under-O-glycosylated plgA1. There was neither
a correlation observed between the data from HAA-ELISA and plgA1 trap (* = 0.09) in the IgAN patients (* = 0.005) nor
was there a linear correlation between Area-IgA and data from HAA-ELISA or the plgA1 trap (r* = 0.005, 0.03, respectively).
Contour plots of clinical parameters versus data from HAA-ELISA and the plgAT trap revealed that patients with a high
score in each clinical parameter concentrated in specific areas, showing that patients with specific O-glycan profiles of
IgAT1 have similar clinical parameters. A decision tree analysis suggested that dominant immune complexes in glomeruli
were consisted of: 1) IgA1-IgG and complements, 2) plgAT and complements, and 3) monomeric IgA1-IgA or aggregated
monomeric IgAT.

Conclusions: Serum under-O-glycosylated IgAT levels are not correlated with glomerular IgA deposition based upon
heterogeneity in the composition of glomerular immune complexes in IgAN patients.
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Background

IgA nephropathy (IgAN), the most common glomerulo-
nephritis and the major cause of end-stage kidney disease
worldwide, is characterized by the presence of IgAl de-
posits in glomerular mesangial areas [1,2]. IgAN patients
display three major alterations in IgA1l: an increased level
of circulating polymeric IgA1 (pIgAl), IgA containing im-
mune complexes [3-6], and under-O-glycosylation in the
hinge region [2,7].

The presence of abnormal O-glycans is related to the
self-aggregation of IgA1l [8,9]. The exposed terminal N-
acetyl-D-galactosamine (GalNAc), resulted from under-O-
glycosylation, presents novel epitopes recognized by IgG
and IgA auto-reactive antibodies [9-11]. Although it has
been thought that under-O-glycosylated IgA1 can deposit
in glomeruli more preferentially, the correlation between
the amount of serum under-O-glycosylated IgAl and its
glomerular deposition has not been clarified.

A lectin from Helix aspersa (HAA), which recognizes
GalNac, has been used to develop an enzyme-linked
immunoadsorbent assay (HAA ELISA) for the measure-
ment of galactose-deficient IgA1 in sera [7]. However, the
selective analysis of O-glycans in the hinge region of
pIgAl, which play an important role in the formation of
immune complexes and glomerular deposition, is difficult
since under-O-glycosylated monomeric and pIgAl are
simultaneously measured by this method. We developed a
novel method to quantify under-O-glycosylated pIgAl
using a mouse Fca/p receptor (mFca/pR) transfectant
(pIgAl trap). Therefore, mFca/uR transfectants were used
for the detection of human pIgAl in the present study.
Fcoa/p R is a high affinity Fc receptor for IgA and IgM. Its
gene is located close to the polymeric immunoglobulin re-
ceptor (poly-IgR) on chromosome 1 [12,13]. Fca/pR binds
to plgA, but not to monomeric IgA because the ligand
polymerization status is crucial for the interaction of Fca/
MR [14,15]. Purified IgG bindings, irrespective of sub-
classes and aggregation, were not observed with the Fca/
UR transfectant [16].

In this study, the correlation between serum under-O-
glycosylated whole IgA1 or pIgAl levels in IgAN patients
and glomerular IgA deposition in IgAN patients was
assessed.

Methods

Patients

Sera were obtained from 32 patients with IgAN within
10 days prior to renal biopsy and diagnosed by the pres-
ence of dominant IgA1 deposits in glomerular mesangial
areas and mesangial cell proliferation. Sera from 20 healthy
controls were also studied. All patients and controls were
older than 18 years of age at the time of blood sampling
for this study. The levels of serum creatinine (s-Cr), IgA,
complement 3 (C3), and random spot urinary protein/Cr

Page 2 of 14

ratio were determined. The number of red blood cells
(RBCs) was identified in urinary sediment and the severity
of hematuria was graded as grade 1 [1-5 RBCs/high-power
field (HPF)], grade 2 (6—20 RBCs/HPF), or grade 3 (=21
RBCs/HPF) [17]. The estimated glomerular filtration rate
(eGFR) was calculated using the formula established by the
Japanese Society of Nephrology for Japanese people:
194 x s-Cr~ 0% x age’o'287 (x0.739 if female) [18]. The
serum IgA concentration of healthy controls was mea-
sured by ELISA.

This study was approved by Ethics Review Committee
of Juntendo University Faculty of Medicine and complied
with the Helsinki Declaration 1975. Written informed
consent was obtained from all patients.

plgA1 trap analysis

The mouse T cell leukemic cell-line BW5147 transfectant
stably expressing mFco/uR has been described previously
[12]. In our preliminary study, it was confirmed that the
affinity of mFco/pR for human pIgAl was much stronger
than that of human Fca/pR. The alternatively spliced vari-
ants of hFca/pR have been reported [13,14], UniProtKB;
Q8WWV6, FCAMR_HUMAN] and the cDNA which we
used for constructing hFca/uR transfectants had shorter
N-terminal leader sequences than that of mFca/pR [12].
Although the amino acid sequences of immunoglobulin
binding site of h-and mFca/pR have been highly con-
served, those around this domain are different [12].

For a negative control, mock transfectant cells were
exposed to Plat E packaging cell-line producing the pMX-
neo vector [19]. The mFca/uR expressing transfectant
(Fca/pR transfectant) and parent BW5147 cells (2 x 10°)
were treated with 5 pl of sera from IgAN patients or from
healthy controls at 4°C for 30 min. The cells were washed
three times with an FACS staining buffer [0.5% phosphate
buffered saline, 0.05% (w/v) bovine serum albumin (BSA),
and 0.05% (w/v) sodium azide]. The sodium azide was
added to an FACS staining buffer to immobilize the cyto-
skeleton of the cells in good viability since mFca/pR inter-
nalizes into cytosol when it is cross-linked by ligands [12].
The transfectant and parent cells were stained with
biotinylated Helix aspersa (HAA) lectin (Sigma-Aldrich,
St. Louis, MO, USA) at 4°C for 15 min. After washing
three times, the transfectant and parent cells reacted with
1:500 diluted phycoerythrin (PE)-conjugated streptavidin
(Beckman Coulter, CA, USA) at 4°C for 30 min. Dead cells
were excluded by propidium iodide (PI) staining (Figure 1a).
The mean fluorescence intensity (MFI) of each cell was
measured by flow cytometry (FACS Calibur, Becton
Dickinson, NJ, USA). Before starting assay, mFca/uR
transfectant and parent cells were preliminary treated with
serum in the same protocol and stained by a PE-
conjugated mouse monoclonal anti-human IgA antibody
(Miltenyl Biotec, Clone IS11-8E10 (isotype: mouse IgGl,
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Figure 1 Area measurement of IgA deposition in a glomerulus. As an example, an immunofluorescence image of a renal biopsy specimen
from an IgAN patient is shown. a. The brightness of the immunofluorescence photograph was adjusted by image J software and the edge of
glomerulus was traced. b. The color photograph was converted to binary data and the edge of glomerulus was traced. Area-IgA (%) was calculated by
the following formula. Area-IgA (%) = (black pixel number) / (whole pixel number within the traced area) x 100. The Area-IgA was 9.8%.

Area-IgA (%) = 9.8

intact molecule), Bergisch Gladbach, Germany) to confirm
that the transfectant cells were saturated by IgA1 and that
the parent cells were not non-specifically stained. The
amount of pIgAl analyzed in each procedure was esti-
mated around 10 pg using purified pIgAl (Data not
shown). Biotinylated mouse monoclonal anti-human IgM
antibody (Miltenyi Biotec, Clone PJ2-22H3 (isotype: mouse
IgG1, intact molecule)) was also used when IgM bindings
to the cells were checked.

Secretory IgA purified from pooled human colostrum
using multistep procedures which may include salt frac-
tionation, gel filtration, ion-exchange chromatography,
and immunoadsorption (MP Biomdicals, Santa Ana, CA,
USA) were adopted as a positive control of the pIgA1l trap.
Human monomeric IgA1 and pIgAl from multiple mye-
loma patients and degalactosylated pIgAl were kindly
provided by Professor Jan Novak (University of Alabama
at Birmingham, AL, USA) and used as controls.

HAA ELISA
HAA lectin was used to determine serum IgA1 with aber-
rantly O-glycosylation, as reported previously [11,20]. For

Table 1 Characteristics of IgAN patients and healthy controls

capture ELISA, flat-bottom, 96-well plates were coated at
4°C overnight with F(ab’)2 fragment of goat anti-human
IgA antibody (Jackson ImmunoResarch Laboratories,
West Grove, PA, USA) at a concentration of 2.5 pug/ml.
The plates were blocked at 4°C overnight with 1% BSA in
PBS containing 0.05% Tween 20 (v/v). Samples diluted in
blocking buffer were added to each well and incubated at
4°C overnight. The captured IgA1 was subsequently desia-
lylated by treatment at 37°C for 3 hours with 10 mU/ml
neuraminidase from Vibrio cholera (Roche Applied Sci-
ence, Indianapolice, IN, USA) in 10 mM sodium acetate
buffer (pH5). Samples were then incubated at 37°C for
3 hours with biotinylated HAA lectin (Sigma-Aldrich)
diluted in the blocking buffer. The bound lectin was
detected with an avidin-horseradish peroxidase conjugate.
The peroxidase chromogenic substrate o-phenylenedi-
amine-H,O, (Sigma-Aldrich) was then added. The color
reaction was stopped with 1 M sulfuric acid and the
absorbance at 490 nm was measured using Spectra Max
(Molecular Devices, Sunnyvale, CA, USA). The HAA
reactivity of IgA1l in each sample was then calculated as
OD units/1 pg of IgAl. Naturally degalactosylated IgAl

Normal range IgAN (n=32) Healthy control (n =20) Difference
Gender (M/F) 11/21 12/8
Age (yrs) 303+83 351440 p <001
IgA (mg/dl) 110-410 305.5+ 127.1 1778+ 646 p < 0,001
Creatinine (mg/dl) 06-1.0 081+0.28 Not done
eGFR (ml/min/1.73 m?) 755+205 Not done
Urinary protein (g/g Cr) 10£13 Not done
C3 (mgrdl) 69-128 98+ 135 Not done
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purified from the plasma of a patient with IgA1 multiple
myeloma was treated with neuraminidase and used as a
standard [7,21]. For comparisons of HAA bindings, the
OD units per 1 pg standard degalactosylated IgA1l were
assigned a value of 100% and it was used as the HAA

ELISA titer.

Page 4 of 14

Immunofluorescence of renal biopsy sections and

measurement of IgA deposition area in glomerulus (Area-IgA)
Staining for IgG, IgA, and C3 in glomeruli on freshly
frozen renal sections (3 pm) was performed using corre-
sponding fluorescein isothiocyanate (FITC)-conjugated
anti-sera (Dako, Copenhagen, Denmark). The samples
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(See figure on previous page.)

Figure 2 plgA1 trap, a novel plgA1 specific for O-glycan analysis. Serum plgA1 was captured by mouse Fca/pR transfectant and O-glycans of
captured plgA1 were stained with fluorescein-labeled HAA lectin. The fluorescence intensity of the transfectant was detected by flow cytometry.
a. Dead cells were extracted from analysis. b. Mouse Fca/uR transfectant can bind to plgA1 from both human milk and myeloma serum but not
bind mIgA1. c. IgM does not interfere in plgA1 binding to mouse Fca/uR. Mouse Fca/uR transfectant was pretreated with or without human IgM.
plgA1 was added to these cells and plgA1 binding on cell surface was detected by PE-conjugated anti-human IgA. IgM had no effect for plgA1
binding to mouse Fca/pR transfectant (left panel). Similarly, pretreatment with plgA1 did not interfere IgM binding to mouse Fca/pR (right panel).
d. HAA lectin only binds to plgA1 but not IgM. Mouse Fca/uR transfectant was pretreated with plgA1. Confocal images collected from one mouse
Fca/pR transfectant triply stained for anti-human IgA antibody (plgA1, green), degalactosylated O-glycans (HAA lectin, red), DAPI (nucleus, blue),
and their merged images. A similar procedure was performed for BW5147 (parent) cells as a negative control. e. plgA1 trap analysis. Mouse Fca/
UR transfectant was pretreated with human serum and washed. The cells were stained with biotin-conjugated HAA and PE-conjugated streptavidin.

The healthy adult was a 44 year-old male and the IgAN patient was a 19 year-old female. A negative control was prepared without serum and a
positive control was prepared with plgA1 from myeloma which has been known as highly degalactosylated by ELISA.

were analyzed under a confocal laser-scanning microscope
(Fluoview FV1000, Olympus, Tokyo, Japan) and the elec-
tronic images were stocked in the JPEG format.

The image files were analyzed by Image Processing
and Analysis in Java software (Image ], NIH, Bethesda,
MD, USA). The brightness of the immunofluorescence
images were adjusted to a range of 25-255 pixel values
and the edges of glomeruli were traced to delimit glom-
erular areas (Figure 1a). The color (RGB) immunofluores-
cence images were converted to binary data and pixels in
black and within whole traced (glomerular) areas were
counted using the Analyze Particle command. IgA depos-
ition areas (Area-IgA,%) were calculated by the following
formula (Figure 1b):

Area—IgA(%) = (black pixel count)/
(whole pixel count within the traced area)

x 100

IgG and C3 deposition areas (Area-IgG, Area-C3,
respectively) (%) were also calculated using the same
procedure.

Colocalization assay of HAA lectin and IgA1 on mFca/uR
transfectant

The colocalization of HAA lectin and IgAl on the mFca/
pR transfectant was analyzed by confocal laser-scanning
microscope. The cells were treated with pIgAl for 15 min,
washed 3 times, and incubated with an FITC-conjugated
rabbit anti-human IgA (DAKO) antiserum at 1:100 dilu-
tion. After washing, the cells were incubated again with bi-
otinylated HAA lectin at room temperature for 2 hours.
Floating cells were adhered to slides using cytospin
(Thermo Scientific, Waltham, MA, USA) and post-staining
with DAPI was also performed. Double staining studies
with human IgA and IgM were also performed to the
mFca/pR transfectant previously treated with human sera
using an FITC-conjugated anti-human IgA and biotinylated
anti-human IgM antisera which was detected by DyLight
549 conjugated streptavidin (Jackson ImmunoResarch

Laboratories). The cells were also fixed to slides by cytospin
and DAPI staining was performed.

Renal histological grading

The renal histological grade was determined using the cri-
teria of the Joint Committee of Research Groups on Pro-
gressive Renal Diseases (Ministry of Health, Labor and
Welfare of Japan) and Japanese Society of Nephrology [22].

Statistics

All values were examined by mean +SD. Differences
between the two groups were evaluated using a Mann-
Whitney’s U test. Comparisons among three or more
parameters were analyzed by analysis of variance. P < 0.05
was defined as statistical significant. Statistical analyses, in-
cluding contour plots, in which data from pIgAl trap form
the X-axis, data from ELISA form the Y axis, and other
clinical parameters form a pseudo-Z axis via colors (age,
interval between onset and biopsy, Area-IgA, Area-IgG,
Area-C3, serum IgA, serum C3, the IgA/C3 ratio, s-Cr,
eGFR, and urinary protein excretion), were performed
using JMP7 (SAS Institute, Cary, NC, USA).

To verify Area-IgA in glomerulus, a decision tree ana-
lysis was used with the HAA ELISA titer and pIgAl trap
value by JMP7. Decision tree algorithms aim to divide the
data set into subsets that give the best discrimination
between groups. Each subset (called a node in a decision
tree) can split the data set into subsets to sharpen the
discrimination between groups. A 10-fold cross validation
was performed by WEKA (Waikato Environment for
Knowledge Analysis).

Results

Characteristics of IgAN patients and healthy controls
Participating IgAN patients consisted of 11 males and 21
females with a mean age of 30.3 + 8.3 years. Mean s-Cr
and eGFR were 0.81 + 0.28 mg/dl and 75.5 + 20.5 ml/min/
1.73 m?, respectively. Urinary protein excretion and serum
C3 levels were 1.0+1.3 g/g Cr and 98+ 13.5 mg/dl,
respectively. There was no significant difference in the
gender distribution between IgAN patients and healthy
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controls. The age was significantly lower and serum IgA
level was significantly higher in IgAN patients than in
healthy controls (p<0.01 and p<0.001, respectively)
(Table 1).

plgAT1 trap, a novel plgA1 specific O-glycan analysis

Serum pIgA was trapped using mouse Fca/pR transfect-
ant. The O-glycans of the captured pIgAl were stained
with fluorescein-labeled HAA lectin and the fluorescein
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intensity of the tranfectant was measured by flow cytome-
try. Dead cells were distinguished from the flow cytomet-
ric study by the measurement of a combination of forward
scatter (FSC), side scatter (SSC), and propidium iodide
(PI) staining (Figure 2a). Purified serum IgA (monomeric
IgA) and monomeric IgAl from multiple myeloma pa-
tients didn’t bind to the BW5147 parent cell, the mock
transfectant, or the mFca/pR transfectant. Both pIgAl
from milk and multiple myeloma patients tightly bound to
the mFca/pR transfectant but showed no reactivity to
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BW5147 or the mock transfectant (Figure 2b). The
mFca/pR transfectant pre-treated with IgM revealed
similar binding activity of pIgAl to non-treated trans-
fectant and showed the same binding activity with or
without pre-treatment with IgM (Figure 2c). While
pIgAl bound mFca/pR transfectant can fix HAA, the
IgM bound mFca/pR transfectant could not react with
HAA. The merged figures revealed the co-localization
of pIgAl and HAA, suggesting that HAA bound to
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under-glycosylated O-glycan of plgAl (Figure 2d).
Serum pIgAl was captured by mFcoa/puR transfectant
and was followed by staining with fluorescein labeled
HAA. The fluorescence intensity of the HAA-bound
transfectant could be measured and it varied in each
patient or healthy control. The positive control, which
was performed with degalactosylated pIgAl from mul-
tiple myeloma patients, showed a higher intensity of
fluorescence of HAA (Figure 2e).
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HAA ELISA and plgA1 trap

HAA ELISA, which was classically used for the measure-
ment of under-glycosylated O-glycan of serum IgAl, was
performed for IgAN patients and healthy controls. Similar
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to previous reports [7,10,11,21], the mean ELISA titer of
IgAN patients (19.0+5.7%, mean+SD) was significantly
higher than that of the healthy controls (15.0 + 2.7%, P < 0.05)
(Figure 3a). pIgAl trap was also performed for the same
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Figure 5 Decision tree analysis. a. Decision tree from IgAN patients cohort (n = 32). The decision tree consists of data from HAA ELISA (ELISA)
and plgAT1 trap based rules and 8 daughter nodes. Each node provides the data from HAA ELISA or a plgA1 trap based rule, total number of
IgAN patients (Count), mean Area-IgA (%) (Mean), and its standard deviation (Std Dev). The Logworth values are the logs of adjusted p-values for
a chi-square test of independence. The nodes are constructed so as to maximize the separation of the two groups, as measured by the sum of
squares due to differences between means (Difference). The patients belong to each terminal node grouped as A, B, C1, C2, and D. b. HAA ELISA
values in each group. HAA ELISA values in the patients belonging to terminal nodes A, B, C1, C2, and D are shown. The horizontal bar shows the mean value
of each group. *P < 005, **P < 001, ***P < 0001 (The stars shows the difference in the data from both ends of a line). ¢. plgA1 trap values in each group.
Data from plgA1 trap (MF! values) in the patients belonging to each group (terminal node) are shown. *P < 005, **P < 001, ***P < 0001 (The stars shows

the difference in the data from both ends of a line). d. The area of each group divided by decision tree analysis on the contour plot of Area-IgA.

samples and it revealed that there was no significant
difference in the mean value of pIgAl trap between IgAN
patients and healthy controls (Figure 3b). There was no
correlation between the values of HAA ELISA and pIgAl
trap, even in healthy controls (r*=0.09, p=0.11) (Figure 3c)
or in IgAN patients (1> =0.005, P =0.14) (Figure 3d). In
IgAN patients, a direct correlation was not observed between
Area-IgA and HAA ELISA values (r*=0.005, p = 0.69)
(Figure 3e). Similarly, Area-IgA was not directly correlated
with the values of pIgAl (MFI) (r*=0.03, p=0.33)
(Figure 3f).

Contour plot analysis

Contour plots showed that the patients with high values in
clinical parameters concentrated in specific areas in each
plot (Figure 4a—k). The patients with high Area-IgA (over

15%) formed a group in the area prescribed by HAA ELISA
titers between 15 and 20 and HAA-pIgA1 trap between 50
and 60 (Figure 4c). The patients in this area showed a long
interval between onset and biopsy and a higher score of
Area-IgG, Area-C3, s-Cr and urinary protein excretion
(Figures 4b,d,eiand k, respectively). Inversely, these pa-
tients showed low values of serum IgA, serum C3, and
eGFR (Figures 4f,g, and j, respectively). Area-IgA and serum
IgA as well as Area-C3 and serum C3 showed a contrasted
pattern (Figures 4cfe,g). In the zone of around 20-25 in
HAA ELISA titers, younger age patients and high eGFR pa-
tients were concentrated (Figures 4a and j).

Decision tree analysis
Since Area-IgA was not linearly correlated with the values
from HAA ELISA and contour plots suggested that there
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higher than that of group A, B and D (*P <005, **P < 0.01).

Figure 7 Clinical parameters in each group. a. Age distribution. b. Distribution of urinary protein. ¢. Distribution of s-Cr. d. Distribution of eGFR.
The mean eGFR is significantly larger than in Group C2 than in groups B and C1 (*P < 0.05). e. Distribution of serum IgA. f. Distribution of serum
(3. Mean value of serum C3 in group D is significantly more than all other groups. (*P <005, **P < 001). g. Distribution of hematuria grade. The
percent distribution of the hematuria grade in each group is shown. The patients in group A reveal significantly more severe hematuria than
those in group A and C2 (*P < 0.05). h. Distribution of renal historical grade. The percentage of the historical grade in each group is shown. The
histological grade of renal specimens of groups B and D were significantly worse than those of group C2 (*P < 0.05). ii. Distribution of urinary
protein excretion three years after renal biopsy. j. Distribution of eGFR three years after renal biopsy. The mean eGFR of group C2 is significantly

was a complex rule between Area-IgA and under-gly
cosylated O-glycan of serum IgAl, a decision tree analysis
was performed to predict Area-IgA in glomeruli and to
classify IgAN patients using a combination of HAA ELISA
and plgAl trap. The decision tree consisted of 5 terminal
nodes and patients who belonged to each node were classi-
fied into 5 groups (Group A, B, C1, C2, and D) (Figure 5a).
Group A was classified by a HAA-ELISA titer value of
<15.1% with Group B characterized by an HAA-ELISA
titer value of >15.1% and <18.7%. Group C was classified
by an HAA-ELISA titer value of >18.7% and <24.2% and
this group was the only group sub-classed into C1 and
C2 by plIgAl trap value (MFI) with a cut off value of
58.5. Group D was classified by a HAA-ELISA titer
value of >24.2% (Figure 5a).

While the mean value of each HAA-ELISA titer group
was significantly different, except for that of C1 and C2
(Figure 5b), the pIgAl trap value in Group C2 was sig-
nificantly higher than the other groups and there was no
difference between any pairs of Groups A, B, C1, and D
(Figure 5c¢). The obtained model showed a 90.6% accuracy
evaluated using a 10-fold cross validation. The overlaid
borders settled by decision tree on the contour plot of
Area-IgA indicated that patients with a high score of
Area-IgA belonged to Group B (Figure 5d).

Immunoglobulin or complement deposition area in
glomeruli and classified groups

A model of Area-IgA was built by decision tree analysis.
While the HAA-ELISA titer was increasing from Group A
to D, the mean value of Area-IgA showed a different distri-
bution. Although the mean value of Area-IgA in Group B
was significantly higher than that in Group A, lower values
were found groups C1 and C2. The mean value of Area-
IgA increased again in Group D, over those in groups C1
and C2, and there was no difference in the value of Area-
IgA between groups B and D (Figure 6a). The mean value
of Area-IgG in groups A and B was higher than that of
groups C1, C2, and D but there was no significant differ-
ence (Figure 6b). The mean value of Area-C3 in glomeru-
lus in groups A and B was more than that in C1, C2 and
C3, and a significant difference was observed between
groups B and D (Figure 6c).

Clinical parameters and classified groups

Since it was suggested that the IgAN patients classified
by decision tree analysis using HAA ELISA titer and
pIgAl trap values were also clinically different, clinical
parameters were compared. The mean patients’ age in
Group C2 seemed younger than other groups but there
was no significant difference (Figure 7a). Urinary protein
excretion (g/g Cr) and s-Cr (mg/dl) showed a similar
distribution in that groups A and B were in a higher
range, groups C1 and C2 in a lower range, and Group D
in a middle range, although these values had no signifi-
cant difference (Figure 7b, 7c). Mean eGEFR in Group C2
was significantly higher than that in groups A and B.
Mean eGEFR values in groups C1 and D were in the mid-
dle range and showed no significant difference with
Group C2 (Figure 7d).

No significant difference in the mean serum IgA level in
each group was observed (Figure 7e). The mean serum C3
level in Group D was significantly more elevated than in
all the other groups (Figure 7f). The patients in Group A
revealed a more severe hematuria than those in groups B
and C2 (Figure 7g). The histological grade of renal speci-
mens in groups B and D were significantly more severe
compared with that of Group C2 (Figure 7h).

The urinary protein excretion level was not significantly
different three years after renal biopsy (Figure 7i). The
mean eGER of group C2 was significantly higher than that
of group A, B and D (P<0.01, P <0.05, P <0.05, respect-
ively) (Figure 7j).

Discussion

There was no significant correlation between data from
HAA ELISA and IgA deposition area (Figure 3e). pIgAl
trap also revealed that there was no linear correlation
between an aberrancy of O-glycan in serum pIgAl and
Area-IgA (Figure 3f). We hypothesized that IgAN patients
have diversified profiles of O-glycan of serum IgA1 at the
time of renal biopsy and that the patients with similar O-
glycan profiles of serum IgA1 showed similar intensities of
glomerular IgA deposition.

We showed the relationships among the three parame-
ters including Area-IgA, data from HAA ELISA, and the
pIgAl trap in two dimensions by contour plots. This
graphic representation suggested that patients with specific
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Table 2 Summary of decision tree analysis using HAA
ELISA and plgA1 trap

A B 1 Cc2 D
HAA ELISA titer + ++ +++ +++ ++++
plgA trap value Middle Middle Middle High Middle
IgA deposition area Middle High Low Low High
IgG deposition area Middle Middle Low Low Low
(3 deposition area Middle  High Middle Middle Low
Age Middle Middle High Low High
Urinary protein excretion  High High Low Low Middle
Hematuria +HH+ +++ + +++
Serum creatinine High High Middle  Low Middle
eGFR Low Low Middle  High Middle
Serum IgA Low Middle  Low High High
Serum C3 Low Low Low Low High
Histological grade Middle  High Middle  Low High

under-O-glycosylated profiles have similar clinical parame-
ters including glomerular immunoglobulin and comple-
ment deposition levels and renal function. Area-IgA and
serum IgA level were inversely distributed as well as Area-
C3 and serum C3 level (Figure 4). It also seemed that
patients with middle-level, HAA-ELISA titer values have
the common characteristics of younger age, low-level IgA
deposition, no IgG deposition, low C3 deposition, low urin-
ary protein excretion, and good renal function. It seemed
that these findings supported our hypothesis.

Decision tree analysis is commonly used for analysis of
clinical data since it is flexible enough to express typical
features of data such as nonlinearities and interactions
[23]. The patients were roughly separated into 4 groups
(A, B, C, D) with the HAA ELISA titer, and Group C was
further divided into two groups (C1 and C2) with the pIgAl
trap value (Figure 5a, 5b). The pIgAl trap value of groups
A, B, and D had no significant differences (Figure 5c). In
the overlaid border areas of the groups on the contour plot
for Area-IgA, data from ELISA and the pIgAl trap showed
that patients with a higher level of Area-IgA were located
in the area of Group B (Figure 5d) and overlaid borders on
the other contour plots supported the reliability of the deci-
sion tree (data not shown).

The serum pIgAl of IgAN patients is more elevated
than in healthy controls [3] and peripheral lymphoid cells
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from IgAN patients synthesize significantly more pIgAl
than control subjects by pokeweed mitogen [24]. The
glomerular IgA1 deposits were mainly polymeric [25,26].
Clearance kinetics and renal deposition analysis of soluble
IgA immune complex revealed that the clearance of
monomeric IgA immune complexes was more rapid than
that of pIgAl immune complexes and only pIgAl im-
mune complexes deposited in glomeruli [27]. The degly-
cosylated pIgAl showed a significantly stronger binding
capacity to human mesangial cells than native pIgAl,
while deglycosylated mIgA did not bind to mesangial cells
[28]. IgA1-IgG or IgA1-IgA immune complex formations
in serum have critical roles in the glomerular immuno-
globulin deposition of IgAN. This phenomenon was de-
rived from over-production of aberrantly galactosylated
IgA1l in the serum and the generation glycan-specific IgG
and IgA autoantibodies [11,29-32].

The patients in groups A and B showed IgAl and IgG
co-deposition in glomeruli, suggesting IgA1-IgG immune
complex formation in serum (Table 2). The complement
system was activated since C3 deposition was evident
while the serum C3 level was low [33,34]. Circulating
IgA1-IgG immune complexes are associated with the acti-
vation of the complement system [35] and IgAl-glycan
specific IgG immune complexes are elevated in IgAN
patients, in addition to the levels urinary IgAl-glycan
specific IgG immune complexes being correlated with
proteinuria in IgAN [11]. Moreover, these immune com-
plexes directly stimulate glomerular mesangial cells to
produce C3 [36]. Thus, the patients in groups A and B
have IgA1-IgG immune complex type IgAN with the acti-
vation of the complement system.

Patients belonging to Group C (C1 and C2) were very
heterogeneous in the deposition of IgA in glomeruli, as
compared with other groups (Figure 6a). The characteris-
tics of Group C were weak IgA deposition in glomeruli
without IgG depositions although a middle-range HAA
ELISA titer was observed (Figure 5b, 6a). The pIgAl trap
value was elevated in Group C2. Glomerular C3 depos-
ition was strong and the serum C3 level was in the low
range in Group C, which suggests an activated comple-
ment pathway and consumption. The pIgAl trap value
was elevated in Group C2 (Table 2). According to these
findings, it was suggested that an immune complex
consisting of under-O-glycosylated pIgAl was dominant
in sera in Group C2 patients. The age of the patients in

Table 3 Speculated form of glomerular immune complex and complements consumption

Group A B c1 c2 D

Speculated IgA-lgG IgA-lgG Self-aggregated plgA Self-aggregated plgA Self-aggregated migA
Immune migA-mlgA

complex 9 9
Complements ! ! ! 1 —

Remarks Early phase?
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Group C2 was younger than the other groups as well as
having had a higher eGFR and mild histopathological find-
ing in renal specimens (Figure 7a, d, and g).

Urinary protein excretion of group C2 became almost
null three years after renal biopsy (Figure 7i) and eGFR
three years after renal biopsy were higher than those at
the time of renal biopsy (Figure 7j). These finding suggests
that the disease activity of the patients in C2 group be-
came calm but they were under hyperfiltration state
reflecting the decrease of functional nephrons in the past.
It was reported that serum IgA/C3 ratio was useful for
predicting diagnosis in IgAN and positively correlates to
severity of prognostic grading [33]. The mean IgA/C3 ra-
tio of the patients in group C2 (3.72 + 1.29) was highest of
all the grpups (A: 2.84 £ 1.2, B: 3.36 + 0.88, C1: 2.83 + 1.18,
D: 3.06 + 1.60) but there were no significantly difference.
While the mean IgA/C3 ratio of whole our patients was
3.13 +1.18, that of previous report whose samples were
collected from 1980 to 1999 was 4.55 + 1.21 [33]. Since
our samples were collected in 2007 or 2008, the time of
sample collection might induce decreasing IgA/C3 ratio.
The decrease of IgA/C3 ratio was made by decrease of
serum IgA. Mean serum IgA levels of our patients was
much less than previous report (305.5+127.1, 3785+
106.4, respectively) [33]. Hygienic conditions or other un-
known factors changed in these two or three decades
might influence the IgA production in IgAN patients. Al-
though serum IgA/C3 ratio is still useful, it is possibly lim-
ited to adopt IgA/C3 ratio for predicting the prognosis of
recent IgAN patients.

Patents in Group D showed the highest HAA ELISA
titer, a middle-range pIgAl trap value, intense glomerular
IgA deposition without IgG deposition, and severe renal
histopathological findings. Being older in age, middle-
ranged renal function and urinary protein excretion, and
elevated serum IgA concentrations were also characteris-
tic. The elevated C3 concentration in serum and weak C3
deposition in glomeruli were especially different from the
other groups (Table 2). Since glomerular IgG deposition
was not observed in this group, it was suggested that the
immune complex consisted of under-O-glycosylated IgA1-
glycan specific IgA immune complexes or self-aggregated
under-O-glycosylated IgA1 [8]. Weak glomerular C3 de-
position suggested that main component of this immune
complex was monomeric IgA1 [37]. Although monomeric
IgA or monomeric IgA immune complexes did not deposit
into glomeruli, cross-linked monomeric IgA could deposit
in glomeruli [27]. The induction of complement activation
and glomerular deposition by administering cross-linked
monomeric IgA was highly dependent on the nature of the
antigen [38].

Table 3 shows a summary of the speculated immune
complexes deposited in glomeruli and component con-
sumption of the patients in each group.
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Conclusion

It is concluded that serum under-O-glycosylated IgA1 was
not linearly correlated with glomerular IgA deposition in
IgAN patients due to the heterogeneity in the composition
of immune complexes of each patient.
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