Eckardt KU, Alper SL, Antignac C, Bleyer AJ, Chauveau D, Dahan K, et al. Autosomal dominant tubulointerstitial kidney disease: diagnosis, classification, and management--a KDIGO consensus report. Kidney Int. 2015;88(4):676–83.
Article
CAS
PubMed
Google Scholar
Bolar NA, Golzio C, Zivna M, Hayot G, Van Hemelrijk C, Schepers D, et al. Heterozygous loss-of-function SEC61A1 mutations cause autosomal-dominant Tubulo-interstitial and Glomerulocystic kidney disease with anemia. Am J Hum Genet. 2016;99(1):174–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gast C, Marinaki A, Arenas-Hernandez M, Campbell S, Seaby EG, Pengelly RJ, et al. Autosomal dominant tubulointerstitial kidney disease-UMOD is the most frequent non polycystic genetic kidney disease. BMC Nephrol. 2018;19(1):301.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rampoldi L, Caridi G, Santon D, Boaretto F, Bernascone I, Lamorte G, et al. Allelism of MCKD, FJHN and GCKD caused by impairment of uromodulin export dynamics. Hum Mol Genet. 2003;12(24):3369–84.
Article
CAS
PubMed
Google Scholar
Ekici AB, Hackenbeck T, Moriniere V, Pannes A, Buettner M, Uebe S, et al. Renal fibrosis is the common feature of autosomal dominant tubulointerstitial kidney diseases caused by mutations in mucin 1 or uromodulin. Kidney Int. 2014;86(3):589–99.
Article
CAS
PubMed
Google Scholar
Christiansen RE, Fiskerstrand T, Leh S, Haukanes BI, Singh AK, Fervenza FC, et al. A mother and daughter with unexplained renal failure. Nephron Clin Pract. 2011;119(1):c1–c9, discussion c7–8.
Nasr SH, Lucia JP, Galgano SJ, Markowitz GS, D'Agati VD. Uromodulin storage disease. Kidney Int. 2008;73(8):971–6.
Article
CAS
PubMed
Google Scholar
Meehan S. In: Colvin R, Chang A, editors. UMOD-related autosomal domimant tubulointerstitial kidney disease, Diagnostic Pathology: Kidney Diseases. 3rd ed. Philadelphia: Elsevier; 2019. p. 718–9.
Google Scholar
Iguchi A, Eino A, Yamazaki H, Ito T, Saeki T, Ito Y, et al. A novel mutation in the uromodulin gene in a Japanese family with a mild phenotype of familial juvenile hyperuricemic nephropathy. CEN Case Rep. 2013;2(2):228–33.
Article
PubMed
PubMed Central
Google Scholar
Shimizu M, Kinoshita Y, Furumoto T, Ichihara Y, Fukudome K, Ichihara T, et al. A case of familial juvenile hyperuricemic nephropathy with a novel UMOD mutation in Japanese family. Japanese J Pediatr Nephrol 2015;28(1):43–49. (in Japanese).
Kuma A, Tamura M, Ishimatsu N, Miyamoto T, Serino R, Ishimori S, et al. A novel UMOD gene mutation associated with uromodulin-associated kidney disease in a young woman with moderate kidney dysfunction. Intern Med. 2015;54(6):631–5.
Article
CAS
PubMed
Google Scholar
Mori T, Hosomichi K, Chiga M, Mandai S, Nakaoka H, Sohara E, et al. Comprehensive genetic testing approach for major inherited kidney diseases, using next-generation sequencing with a custom panel. Clin Exp Nephrol. 2017;21(1):63–75.
Article
CAS
PubMed
Google Scholar
Onoe T, Yamada K, Mizushima I, Ito K, Kawakami T, Daimon S, et al. Hints to the diagnosis of uromodulin kidney disease. Clin Kidney J. 2016;9(1):69–75.
Article
PubMed
Google Scholar
Loupy A, Haas M, Solez K, Racusen L, Glotz D, Seron D, et al. The Banff 2015 kidney meeting report: current challenges in rejection classification and prospects for adopting molecular pathology. Am J Transplant. 2017;17(1):28–41.
Article
CAS
PubMed
Google Scholar
Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and indels. PLoS One. 2012;7(10):e46688.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 2011;39(17):e118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zager RA, Cotran RS, Hoyer JR. Pathologic localization of Tamm-Horsfall protein in interstitial deposits in renal disease. Lab Investig. 1978;38(1):52–7.
CAS
PubMed
Google Scholar
Resnick JS, Sisson S, Vernier RL. Tamm-Horsfall protein. Abnormal localization in renal disease. Lab Investig 1978;38(5):550–5.
Hart TC, Gorry MC, Hart PS, Woodard AS, Shihabi Z, Sandhu J, et al. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J Med Genet. 2002;39(12):882–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ayasreh N, Bullich G, Miquel R, Furlano M, Ruiz P, Lorente L, et al. Autosomal dominant Tubulointerstitial kidney disease: clinical presentation of patients with ADTKD-UMOD and ADTKD-MUC1. Am J Kidney Dis. 2018;72(3):411–8.
Article
PubMed
Google Scholar
Bollee G, Dahan K, Flamant M, Moriniere V, Pawtowski A, Heidet L, et al. Phenotype and outcome in hereditary tubulointerstitial nephritis secondary to UMOD mutations. Clin J Am Soc Nephrol. 2011;6(10):2429–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stokes MB, Valeri AM, Herlitz L, Khan AM, Siegel DS, Markowitz GS, et al. Light chain proximal Tubulopathy: clinical and pathologic characteristics in the modern treatment era. J Am Soc Nephrol. 2016;27(5):1555–65.
Article
CAS
PubMed
Google Scholar
Fogo AB, Lusco MA, Najafian B, Alpers CE. AJKD atlas of renal pathology: toxic acute tubular injury. Am J Kidney Dis. 2016;67(6):e31–2.
Article
PubMed
Google Scholar
Takashima T, Onozawa K, Rikitake S, Kishi T, Miyazono M, Aoki S, et al. Two cases of minor glomerular abnormalities with proteinuria disproportionate to the degree of hypoproteinemia. CEN Case Rep. 2014;3(2):172–7.
Article
PubMed
PubMed Central
Google Scholar
Kemter E, Prueckl P, Sklenak S, Rathkolb B, Habermann FA, Hans W, et al. Type of uromodulin mutation and allelic status influence onset and severity of uromodulin-associated kidney disease in mice. Hum Mol Genet. 2013;22(20):4148–63.
Article
CAS
PubMed
Google Scholar
El-Achkar TM, McCracken R, Rauchman M, Heitmeier MR, Al-Aly Z, Dagher PC, et al. Tamm-Horsfall protein-deficient thick ascending limbs promote injury to neighboring S3 segments in an MIP-2-dependent mechanism. Am J Physiol Renal Physiol. 2011;300(4):F999–1007.
Article
CAS
PubMed
PubMed Central
Google Scholar